EoMs for Translation
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we have defined our absolute acceleration terms in body axes, which means we
can define the LHS of Equation
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We presume the aircraft has one or more propulsions providing thrust, T, along a
vector defined in the x/z plane, at angle 0+ to x. We include an additional term for

side wash effects due to propulsion, Fry



equations of motion for translation:
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EoMs for Rotation

Newton’s second law: the angular acceleration is proportional to the net torque
and inversely proportional to the moment of inertia. angular momentum is
defined as:
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Simplification of the Inertia Tensor via symmetry

Most aircraft are symmetric about a longitudinal/vertical plane, and will also tend
to have the principal yaw tensor axis aligned withZb. This means we can assume
that: IXy =lyx=1lzy=lyz=0
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The products and moments of inertia are constant in time, hence the time rate
of change of [I]cancels to zero
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collecting terms of the moments and products of inertia yields
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Summary of the equations of motion#

With the translational (Eq. (29)) and rotational (Eqg. (33)) defined, and the relationship
between the Euler angles and the body rates (Egs. eq:eulerratetoomega and (18)), fully
unconstrained flight in 6DoF can be described.

In total twelve equations have been derived (body/attitude rates are only three but the

matrix is tough to invert, so I'll include both versions below) that can describe aircraft
position and attitude in a Newtonian framework:

Translational Motion:
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Body angular rate due to an attitude rate:
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Angular Motion:
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https://www.aircraftflightmechanics.com/EoMs/Summary.html#summary-of-the-equations-of-motion
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Stability Derivatives

Reduced derivative force and moment perturbations:
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The linear force and moment perturbations, may be substituted into the linear equations of
motion, to have:
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Concise Form of Dimensional EoMs
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The X-Force equation (forward speed equation):
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The Z-Force equation (heave equation):
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The M-Moment equation (pitching moment equation):
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The linearised Euler pitch equation (pitch rate kinematic equation):
q is pitch rate, = 0’

Now Equations can be written in matrix form to give the linearised equation of longitudinal
motion in concise form:
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Lateral/Directional EoMs

The asymmetric or lateral/directional EoMs may be similarly manipulated.
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The Y-Force equation (sideslip equation)
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The two moment equations are coupled, so need to be decoupled. Dividing Equation by the
rolling moment of inertia, IXX:
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the same can be performed , dividing by the yawing moment of inertia 1zz:
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Lastly, the yaw rate and body rate kinematic equations give:
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So finally, the linearised lateral/directional equations of motion may be expressed in state-space
form
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The two sets of matrix equations, , are known as the equations of motion in concise form.

These are in state space form
i = Az + B

where  Z = the state vector (n) % = the control matrix (m)

A = the system matrix (nbyn) B — the control matrix (n by m)



