
1

Triggers

in MySQL

(Log of Records)

Soma Soleiman Zadeh

Database Systems II (IT 216)

Spring 2024 - 2025

Week 15

 May 13, 2025

IT Department

Outline

◦ Triggers in MySQL

◦ Row_level Triggers vs. Statement_level Triggers

◦ BEFORE Row_Level Trigger and AFTER Row_Level Trigger

◦ Syntax of Creating Row_Level Trigger in MySQL

◦ Triggers for Log of Record

2

What is Trigger?

◦ A trigger is a special type of stored procedure that is invoked

automatically in response to an event.

◦ Each trigger is associated with a table,

◦ which is activated on any DML statement such as INSERT,

UPDATE, or DELETE.

Why We Need Triggers in Database?

◦ Triggers are useful in many situations. Some of the main reasons for

using triggers are:

◦Validating Input Data

◦Keeping a Log of Records

◦Enforce Business Rules

3

Trigger vs. Procedure

◦ Trigger is a special procedure, but

◦ Procedure must be called by the user.

◦ Trigger is activated (called) automatically when a data

modification event is made on a table.

Row-Level Trigger vs. Statement-Level Trigger

◦ Row-Level Trigger :

◦ This type of trigger is executed once for each row affected by a

data modification operation, such as INSERT, UPDATE, or DELETE.

◦ Statement-Level Trigger :

◦ This type of trigger fires once for each SQL statement executed,

regardless of the number of rows that have been changed.

4

Types of Triggers

1. Before Insert : It is activated before the insertion of data into the table.

2. After Insert : It is activated after the insertion of data into the table.

3. Before Update : It is activated before the update of data in the table.

4. After Update : It is activated after the update of the data in the table.

5. Before Delete : It is activated before the deletion of data from the table.

6. After Delete : It is activated after the deletion of data from the table.

Syntax of Creating a Row-Level Trigger in MySQL

DELIMITER //

CREATE TRIGGER trigger_name

(BEFORE | AFTER) (INSERT | UPDATE | DELETE) ON table_name

FOR EACH ROW

BEGIN

 <Trigger Statements>

END//

DELIMITER ;

5

Log of Records Scenario

PID Pname Price

1 Tablet 150

..

..

insert into Product values (1, ‘Tablet’, 150);

Product Table

Product_Log Table

id Action_name Old Price New Price By_User Action_Date

1 Insert Null 150 root 10 May 2025

• We are going to create a trigger that is activated after inserting a

row into the product table.

• The trigger is activated whenever a user inserted data into the

product table and fills the Product_Log table with a log of the

insertion event.

• The log contains information on the action name, which user did

the insertion and at which date this insertion happened.

Log of Records Scenario

insert into Product values (1, ‘Tablet’, 150);

Product Table

Product_Log Table

id Action_name Old Price New Price By_User Action_Date

1 Insert Null 150 root 10 May 2025

2 Insert Null 1200 ali 12 May 2025

insert into Product values (2, ‘Laptop’, 1200);

PID Pname Price

1 Tablet 150

2 Laptop 1200

..

6

Product and Product_Log Tables

PID Pname Price

• Suppose Product table is already created. Product Table

• We also need another table (Product_Log) to keep log of records.

id Action_name Old Price New Price By_User Action_Date

Product_Log Table

Triggers for Log of Records

◦ Now, we will create three Triggers for the Product table and save the log of data into the
Product_Log table.

▪ First Trigger is activated after executing INSERT statement on Product table.

▪ Second Trigger is activated after executing DELETE statement on Product table.

▪ Third Trigger is activated after executing UPDATE statement on Product table.

P
ro

d
u

c
t

T
a

b
le

P
ro

d
u

c
t_

L
o

g
 T

a
b

le id Action_name Old Price New Price By_User Action_Date

1 Insert Null 150 root 10 May 2025

2 Insert Null 1200 user1 12 May 2025

3 Update 1200 1000 user1 13 May 2025

4 Delete 150 Null user2 15 May 2025

PID Pname Price

1 Tablet 150

PID Pname Price

1 Tablet 150

2 Laptop 1200

PID Pname Price

1 Tablet 150

2 Laptop 1000

PID Pname Price

1 Tablet 150

2 Laptop 1000

7

Creating Insertion Trigger

The Effect of Insertion Trigger

Product_Log Table

id Action_name Old Price New Price By_User Action_Date

1 Insert Null 150 root 10 May 2025

2 Insert Null 1200 user1 12 May 2025

PID Pname Price

1 Tablet 150

2 Laptop 1200

Product Table

The Effect of Insertion Trigger

8

Creating Updating Trigger

The Effect of Updating Trigger

Product_Log Table

id Action_name Old Price New Price By_User Action_Date

1 Insert Null 150 root 10 May 2025

2 Insert Null 1200 user1 12 May 2025

3 Update 1200 1000 user1 13 May 2025

PID Pname Price

1 Tablet 150

2 Laptop 1000

Product Table

The Effect of Updating Trigger

9

Creating Deletion Trigger

The Effect of Deletion Trigger

Product_Log Table

id Action_name Old Price New Price By_User Action_Date

1 Insert Null 150 root 10 May 2025

2 Insert Null 1200 user1 12 May 2025

3 Update 1200 1000 user1 13 May 2025

4 Delete 150 Null user2 15 May 2025

PID Pname Price

1 Tablet 150

2 Laptop 1200

Product Table

The Effect of Deletion Trigger

	Slide 1: Triggers in MySQL (Log of Records)
	Slide 2: Outline
	Slide 3: What is Trigger?
	Slide 4: Why We Need Triggers in Database?
	Slide 5: Trigger vs. Procedure
	Slide 6: Row-Level Trigger vs. Statement-Level Trigger
	Slide 7: Types of Triggers
	Slide 8: Syntax of Creating a Row-Level Trigger in MySQL
	Slide 9: Log of Records Scenario
	Slide 10: Log of Records Scenario
	Slide 11: Product and Product_Log Tables
	Slide 12: Triggers for Log of Records
	Slide 13: Creating Insertion Trigger
	Slide 14: The Effect of Insertion Trigger
	Slide 15: Creating Updating Trigger
	Slide 16: The Effect of Updating Trigger
	Slide 17: Creating Deletion Trigger
	Slide 18: The Effect of Deletion Trigger

