IT Department

Triggers
in MySQL
(Validating Input Data)

Soma Soleiman Zadeh
Database Systems Il (IT 216)
Spring 2024 - 2025
Week 16
May 20, 2025

Outline

o BEFORE Row_level Triggers
o Triggers for Validating Input Data

o Triggers for Enforcing Business Rules

Why We Need Triggers in Database?

° We already mentioned following reasons as some of the main reasons for using
triggers:
o Validating Input Data
o Keeping a Log of Records
o Enforce Business Rules

o In the previous lecture, we explained After Row-Level triggers for keeping a log

of records.

o This lecture’s focus is on Before Row-Level triggers that are used for validating

input data or enforcing business rules.

Types of Triggers

1. Beforelnsert :Itis activated before the insertion of data into the table.
2. After Insert : It is activated after the insertion of data into the table.

Before Update : It is activated before the update of data in the table.
After Update : It is activated after the update of the data in the table.

Before Delete : It is activated before the deletion of data from the table.
After Delete : It is activated after the deletion of data from the table.

Syntax of Creating Row_Level Trigger in MySQL ‘"@T'

DELIMITER //
CREATE TRIGGER trigger_name
(BEFORE | AFTER) (INSERT | UPDATE | DELETE) ON table_name
FOR EACH ROW
BEGIN
<Trigger Statements>
END//
DELIMITER ;

Validating Input Data Scenario

* We are going to create a trigger that is activated before inserting a Product Table
row into the product table.

Pname

* The trigger is activated before a user inserted data into the product
table and avoids entering negative value for price column.

» If a user wanted to insert data of a new product to the table while
the price value is negative, the trigger doesn’t allow this insertion
and shows an error message to the user.

ERROR: Price Can not be Negative!

* In case price value of the new product is not negative, the trigger
lets the insertion happens.

insert into Product values (1, ‘Tablet’, - 200);

How to Return Error Message to User?

o By using SIGNAL Statement:
o SIGNAL statement is a way to “return” an error.

o SIGNAL provides error information to the client.

o Syntax of SIGNAL Statement:
SIGNAL SQLSTATE sqlstate_value SET Error_Message;

o To signal a generic SQLSTATE value, use '45000', which means
“unhandled user-defined exception.”

e

Creating Validate_Price Trigger on Product Table ‘"@"‘"'

delimiter //
CREATE TRIGGER validate_price
BEFORE INSERT ON product
FOR EACH ROW
BEGIN
IF NEW.price < @ THEN
SIGNAL SQLSTATE '450€0° SET MESSAGE_TEXT = 'Price cannot be negative';
END IF;
END//

delimiter ;

Enforcing Business Rules Scenario

» Suppose that a business has a limitation on employees’ salaries as follows:

[Limitation for Salary: 0 <= Salary <= 5000]

» Define a trigger that is activated before any update is going to happen on the
Employee table.

» The trigger considers the above limitation for salary. So, if the updated salary

becomes more than $5000, it automatically sets to the maximum amount of salary
($5000), and if the updated salary becomes less than $0, it sets to $0.

Enforcing Business Rules Scenario

[Limitation for Salary: 0 <= Salary <= 5000]

For example, when the following update statement is executed, before it affects the Employee table,
the trigger is executed to check the rule of salary amount (0 <= Salary <= 5000).

The current salary for “Peter” is $900, and after updating his salary, it becomes $900*5=$4500,
which is in allowed range of salary.

The current salary for “Sandy” is $1300, and after updating his salary, it becomes $1300*5=$6500,
which is NOT in allowed range of salary. So, the trigger automatically sets his salary to $5000,
instead of $6500.

Employee Table

ID | name |salary UPDATE Employee
Peter 900 SET salary =salary *5;

Sandy | 1300

Creating Validate_Salary Trigger

delimiter //

CREATE TRIGGER validate_salary

BEFORE UPDATE ON employee

FOR EACH ROW

BEGIN
IF NEW.salary > 5000 Then SET NEW.salary=5000;
ELSEIF NEW.salary < @ Then SET NEW.salary = 0;
END IF;

END//

delimiter ;

Enforcing Business Rules Scenario

For the previous scenario, define a trigger that is activated before any update is
going to happen on the Employee table.

[Limitation for Salary: 0 <= Salary <= 5000]

This trigger considers the above limitation for salary, but if the updated salary
becomes more than $5000 or less than $0, the trigger sends an error message to
the user and doesn’t allow the updating statement to be executed.

Employee Table

ID | name |salary UPDATE Employee

SET salary =salary *5;
Peter 900 & Y

Sandy | 1300

ERROR: Update is against the rules.

Creating Validate_Salary_V2 Trigger

delimiter //
CREATE TRIGGER validate_salary_v2
BEFORE UPDATE ON employee
FOR EACH ROW
BEGIN
IF NEW.salary > 5000 OR New.salary < @ THEN
SIGNAL SQLSTATE '45000' SET message_text='Update is against the rules!’;
END IF;
END//

delimiter ;

	Slide 1: Triggers in MySQL (Validating Input Data)
	Slide 2: Outline
	Slide 3: Why We Need Triggers in Database?
	Slide 4: Types of Triggers
	Slide 5: Syntax of Creating Row_Level Trigger in MySQL
	Slide 6: Validating Input Data Scenario
	Slide 7: How to Return Error Message to User?
	Slide 8: Creating Validate_Price Trigger on Product Table
	Slide 9: Enforcing Business Rules Scenario
	Slide 10: Enforcing Business Rules Scenario
	Slide 11: Creating Validate_Salary Trigger
	Slide 12: Enforcing Business Rules Scenario
	Slide 13: Creating Validate_Salary_V2 Trigger

