Dynamic Stability

1. Background
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For cases in which { > 1, the characteristic equation has two (distinct) real roots, and the solution
takes the form:
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The constants al and a2 are determined from the initial conditions
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The constants a; and a9 are again determined from the initial conditions
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Underdamped System; When the damping ratio { < 1,
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The period is given by: wn V1=
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time to damp to 1/n times the initial amplitude is given by b1 = e
Wn

2. Longitudinal Motions
Recall that the linearized equations describing small longitudinal perturbations from a
longitudinal equilibrium state can be written
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If we introduce the longitudinal state variable vector x=[u w gq H]T
and the longitudinal control vector n = [6c 5T]T

And it is common to neglect Ze with respect to unity and to neglect Zq relative to u0,
Hence represent in state space form:
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The various dimensional stability derivatives appearing in above are related to their
dimensionless aerodynamic coefficient counterparts in following Table;

Variable X VA M
u Xy = 22 [2Cx0 + Cxu] | Zu = - [2C20 + Czu] | My = £2Cppy,
w Xuw = % X o Zy = n?i:’n Cza. M, = EZ; Cria
w Xi;=0 Ly = %ﬁczd M, = %% ma
q X, =0 Zy = %Czq M, = %C?uq

Example:
For example, We illustrate this response using the stability derivatives for an aircraft

(the Boeing 747) at its Mach 0.25 power approach configuration at standard sea-level
conditions.

V =279.1 ft/sec, p=0.002377 slug/ft>

S = 5,500. ft?, ¢=27.3 ft

W =564,032. b, I, = 32.3 x 10° slug-ft*

and the relevant aerodynamic coefficients are

Cr = 1.108, Cp =0.102, By =0
CLo =570, Cr4=6.7, Cr, =54, CLy =0

Cp, = 0.66,
Cro =126, C,5=-32, Cup,=-208, Cuy =0

These values correspond to the following dimensional stability derivatives

X, = —0.0212, X, = 0.0466
Z, = 02306, Z,=-06038, Z;,=-0.0341, Z,=-T7.674

M, = 0.0, M, = —0.0019, M, = —0.0002, M, = —0.4381
and the plant matrix is —0.0212  0.0466  0.000  —32.174)
A 02220 05839 262472 0.0

0.0001  —0.0018 —0.5015 0.0
0.0 0.0 10 00 )

The characteristic equation is given by
|A — AT| = A% 4 1.10662% + 0.7994A2 + 0.0225) + 0.0139 = 0
and its roots are Asp = —0.5515 £12 0.6880 A, = —0.00178 2 0.1339

Where A=n+ing = -{o,+io/1— {2
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The period of the two modes:
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and the numbers of cycles to damp to half amplitude of the respective modes are:
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Figure below illustrates the short period and phugoid responses for the A/P under these
conditions. These show the time histories of the state variables following an initial perturbation
that is chosen to excite only the (a) short period mode or the (b) phugoid mode, respectively.
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Approximation to Short Period Mode

A useful approximation for the mode can thus be developed by setting u = 0 and solving

(1—Zp)w = Zyw+ (uo+ Zy) q
—Myw + ¢ = Myw+ Myq

which can be written in state-space form as
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it is consistent with the level of our approximation to neglect Zq relative to u0 and Zw.
With respect to one, Thus:
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The characteristic equation for the simplified plant matrix of the above eq.is:
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if the derivatives with respect to  are expressed as derivatives with respect to a,

A2 (M + My +Z—)A M, Z"‘Mq:o
Uo o

My, + My + Z=
wp =] —M, + ZaM, (=——2 Uo
Ug an

Example

For the example considered in the preceding sections of the a/p in powered approach we

find
Wn = \/0.54 + (= 168257?9( 1 4381) se = 0.897 sec™
168.
C:—_4381_ 0r6+(27910) = 0.612
2(0.897) '

When these numbers are compared to on = 0.882 rad/sec and { = 0.6255 from the more
complete analysis (of the full fourth-order system), we see that the approximate analysis
over predicts the undamped natural frequency by only about 1 per cent, and under
predicts the damping ratio by less than 2 per cent.



Approximation to Phugoid Mode

Since the phugoid mode typically proceeds at nearly constant angle of attack, and the motion is
so slow that the pitch rate q is very small, we can approximate the behavior of the mode by
writing only the X- and Z-force equations

u = Xyu+ X,w — gocos Oy
(1—-Zy)w=Zyu+ Zyw + (uo + Zg) ¢ — go sin ©pf

which, upon setting o = w= 0, can be written in the form

d fu Xu —gocosOg\ (u’
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Since, Zq is typically very small relative to the speed u0, it is consistent with our neglect of g
and w also to neglect Zq relative to u0. Also, we will consider only the case of level flight for
the initial equilibrium, so ®0 = 0, and Eq. becomes
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It is useful to express these results in terms of dimensionless aerodynamic coefficients.

S
Ly = — @ [2CLo + MCpy,]

mug

for the case of a constant-thrust propulsive system,

S
X, =- @ [2Cpy + MCppl
mug

if we further neglect compressibility effects, we have
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Example:

For the example for the A/P in previous examples, we find

\/532.174 ft /sec?

—0.163sec™! (= —m=o— =
279.1 ft/sec See C= /51108

Wy =

When these numbers are compared to on = 0.134 sec—1 and { = 0.0133 from the more complete
analysis (of the full fourth-order system), we see that the approximate analysis over predicts the
undamped natural frequency by about 20 per cent, and over predicts the damping ratio by a

factor of almost 5.

LATERAL/DIRECTIONALMOTIONS

Recall that the linearized equations describing small lateral/directional perturbations from a
longitudinal equilibrium state can be written
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This is the approximate form of the linearized equations for lateral/directional motions as they
appear inmany texts

Variable Y L N
, Qs . QSb . QSh
v Y, = mio C.‘Ui L, = I CIH Ny = I.ug C"’ﬂ
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. . QSb . QSb? . QSb?
T YPJ C Lr - Clr NP‘ - 2,;.,,,“Cn,7‘
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Table: Relation of dimensional stability derivatives for lateral/directional motions to dimension
less derivatives of aerodynamic coefficients.



Weillustrate this response again using the stability derivatives for the Boeing 747 aircraft at its
Mach 0.25 powered approach configuration at standard sea-level conditions.

For the lateral/directional response we need the following vehicle parameters:

W = 564, 032. Ibf, b=195.7 ft
I, =14.3 x 10° slug ft*, I. =45.3 x 10° slug ft?, I,. = —2.23 x 10° slug ft”

and the aerodynamic derivatives

yg=—96 C, =00  C, =00
Cjy=-221 C;,=-45 C; =0.101
C,; =015 C,,=—.121 C,, =—.30

These values correspond to the following dimensional stability derivatives

Y, = —0.0999, Y, = 0.0, Y, = 0.0
L,=—0.0055 L,=-10994, L, =0.2468
N, =0.0012, N, =-.0933, N,=—.2314

Using these values, the plant matrix is found to be

—0.0999  0.0000 32.174 —-279.10
—0.0057 -1.0932 0.0 0.2850
0.0 1.0 0.0 0.0
0.0015  —.0395 0.0 —.2454

A=

The characteristic equation is given by
A — AI| = A* + 1.4385)% + 0.8222A% + 0.7232\ + 0.0319 =0

and ts roots are —\ 08066 4 ¢ 0.7433
Aroll = —1.2308

Aspiral = —.04641

where, as suggested by the subscripts, the first pair of roots corresponds to the Dutch Roll mode,
and the real roots corresponds to the rolling and spiral modes, respectively.

The undamped natural frequency and damping ratio of the Dutch Roll mode is thus given by

1 1
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0.08066 o
Wnpr = m = 0.7477 sec

The period of the Dutch Roll mode is
2n 27

wn/1 -2 0.7477V1 — 0.10792

Thr = = 8.45 sec

Approximation to Rolling Mode

It has been seen that the rolling mode typically corresponds to almost pure roll. Thus, it is
reasonable to neglect all equations except the rolling moment equation, and all perturbations
except p. We thus approximate the rolling mode by the single first-order equation

p=rr il
— Gyl
_ Ly +iaNy

1 — iy,

for which the characteristic value is A\

For our example of the Boeing 747 in powered approach at M = 0.25,

_ —1.0994 + (—1559)(=.0933)

A= = —1.093 sec !
1— (—.1559)(—.0492) see

which is a bit more than 10 per cent less than the value of-1.2308 from the analysis for the full
fourth-order system.

Approximation to Spiral Mode

The spiral mode consists of a slow rolling/yawing motion for which the sideslip is relatively
small. The roll rate is quite small compared to the yaw rate, so a reasonable approximation is to
set

— 0=
dt 1 — iy, 1— i,

—_ = v+ r

L, +i,N,

VR —————— 1
L, +1i.N,

Since ix and iz are generally very small, this can be approximated as

L.
v ——

Ly



The yaw equation dr _ No+i:Ly v+ Ny +.IZ.LT7”

dt 1 — i, 1 —iyi,

Neglect of the product of inertia terms can then be written

dr L, N,
R Nr- . rivVo
dt ( L, ) "

For our example of the Boeing 747 in powered approach at M = 0.25,

0.2468
A=—.2314 — —=——(0.0012) = —.1
) —0055 0012) &

Approximation to Dutch Roll Mode

The most useful approximations require neglecting either the roll component or simplifying the
sideslip component by assuming the vehicle c.g. travels in a straight line. This latter
approximation means that y = —f3, or

The roll and yaw moment equations (neglecting the product of inertia terms ix and iz) can then

be written as:
a (v 0 0  —ug v
—\|p|l=|Ls Lp, L, P
dt \ No N, N,/ \r

The characteristic equation for this system is
A — (L, + N A + (LN, + uoN, — Ly N,) X+ ug (LyN, — L,N,)) =0
N4 agd? fa ) +ap=0

Thus, the undamped natural frequency is given by

2 _ 0 (LyNy — LuN,)
" L,+ N,

The damping ratio is seen to be proportional to
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For our example of the Boeing747 in powered approach at M=0.25,

(279.1) [(—1.0994)(0.0012) — (—.0055)(—.0933)]  _,

1/2
] = 0.620 sec™?

o —1.0994 — 2314 e
and
—1.0094)(—.2314)—(.2468)( —.0933)+(279.1)(0.0012 —.0055)(—.0933)—(—1.0994)(0.0012
C=— ( - )7(1.0994):2314 - X L 4 (279-1)( )((71.09345.2314)2 - )

2(0.620)
=0.138

Summary of Lateral/Directional Modes

1. A rolling mode that usually is heavily damped, whose time to damp to half amplitude is
determined largely by the roll damping L,;

2. A spiral mode that usually is only lightly damped, or may even be unstable. Dihedral effect is
an important stabilizing influence, while weathercock stability is destabilizing, for this mode;
and

3. A lightly damped oscillatory, intermediate frequency Dutch Roll mode, which consists of a
coordinated yawing, rolling, sideslipping motion. For this mode, dihedral effect is generally
destabilizing, while weathercock stability is stabilizing.



