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Lecture 6
IoT Design Methodology



Lecture Topics
 Introduction to IoT Design Methodology 
1. Purpose & Requirements Specification, 
2. Process Specification, 
3. Domain & Information Modeling, 
4. Service Specification, and 
5. Application Design & Integration.



Introduction to IoT Design Methodology
• IoT design methodology is a structured approach for

developing Internet of Things systems. It provides a step-by-
step guide for translating user needs and technical
requirements into an operational IoT system.

• In this lecture, we simplify the methodology into 5 main
structured stages:

1. Purpose & Requirements Specification,
2. Process Specification,
3. Domain & Information Modeling,
4. Service Specification, and
5. Application Design & Integration.



Structured IoT Design Methodology



Benefits of Structured IoT Design
- Easier planning and requirement alignment
- Better system modularity and scalability
- Helps document logic for testing and deployment
- Encourages reuse of components and services



1. Purpose & Requirements Specification

• This phase defines why the IoT system is needed and
what it is expected to do. It includes:
– Purpose and behavior of the system
– Data collection needs
– System management and User Interface needs
– Data privacy and security requirements

• A clear requirement specification ensures that users
agree on what the system is meant to achieve.



Example – Purpose & Requirements 
(Smart Light)

• Purpose: A smart light system that automatically
switches lights on or off based on environmental
lighting and user commands.

• Requirements:
- Auto Mode: Light turns on when ambient light is 
below a threshold.
- Manual Mode: Users can control the light remotely.
- Security: User authentication required.
- Data: Sensor readings stored for audit or analytics.



2. Process Specification
• This step describes how the system will work

operationally. It includes detailed use cases and the
sequence of operations derived from the
requirements.

• For each use case, identify:
– Inputs (e.g., sensor data)
– Outputs (e.g., light state)
– Triggers (e.g., time of day, user action)
– Logical steps the system takes to handle those triggers.



Example – Process Flow (Smart Light)

1. The system starts and sets its mode (auto/manual).
2. In auto mode, the light sensor reads brightness every 5
seconds.
3. If brightness < threshold, turn light ON; else, turn OFF.
4. In manual mode, the system waits for user input via
web/mobile app.
5. Based on the command, the light is switched ON or OFF.
6. Status is stored in a local database.



3. Domain & Information Model

• The Domain Model defines key entities (objects) and their 
relationships. The Information Model builds upon this by 
defining attributes and data structure of each entity.

• For example:
- Domain: Light, Sensor, Controller
- Information: Light.state, Sensor.lux, Controller.mode

• This abstraction helps organize the system in terms of 
components and their roles.



Modeling in IoT Systems
• Virtual Entities:

- Light: physical actuator, states = on/off
- Sensor: detects light levels, outputs = lux
- Mode: user selection (auto/manual)

• Relationships:
- Sensor feeds data to Controller
- Controller sends commands to Light
- Mode affects Controller logic.



4. Service Specification
• Services define what the system offers and how it interacts 

with the environment and users.
• Each service should include:

- Type of service (e.g., sensing, actuation, notification)
- Inputs and outputs
- Preconditions (e.g., active mode)
- Effects (e.g., light turns on)

• Services should be modular and reusable.



Example – Services for Smart Light

1. Auto Light Service:
- Input: light sensor value
- Output: turn light on/off
- Runs when mode = auto

2. Manual Control Service:
- Input: user button press
- Output: toggle light
- Runs when mode = manual

3. Status Update Service:
- Input: current light/mode
- Output: send status to User Interface



5. Application Design & Integration

• This step focuses on the technical implementation and 
integration of all hardware and software components.

• It includes:
- System architecture (logical/physical)
- Device connectivity (sensors, actuators)
- Communication protocols (e.g., HTTP, MQTT)
- Backend services and user interface



Example – Full System Layout 
(Smart Light)

1. Raspberry Pi as the main controller
2. Light Sensor (LDR) connected via GPIO
3. Relay module to switch light on/off
4. Python script reads sensor and runs logic
5. ThingsBoard web interface widgets to store and visualize data
System responds to sensor data or user commands and acts 
accordingly.
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