

Malware

Introduction

- Malware, or malicious software, is an all-encompassing term for software that intentionally inflicts damage on its users who typically have no idea that they are running it.
- Malware includes:
 - Computer viruses, worms
 - Trojans
 - Ransomware
 - Scareware
 - Spyware
 - cryptocurrency miners
 - adware,
 - and other programs
- It is intended to exploit computer resources for nefarious purposes.

Computer Viruses

- What is a Virus?
 - Malware that inserts its code into files/programs to spread.
 - Requires a host (like biological viruses) to replicate.
- How Do Viruses Spread?
 - Infected files: Documents, executables, boot sectors.
 - Removable media: USB drives, shared networks.
 - Human action: Running infected programs or opening malicious files.
- Impact of Viruses
 - Performance issues (slowdowns, crashes).
 - Data corruption/deletion.
 - Dormant threats: Some operate silently.
 - Declining but not dead: Modern malware favours worms/Trojans.
- Protection Tips
 - Use antivirus software (real-time scanning).
 - Avoid unknown file sources.
 - Regularly update OS/apps.
 - Scan external devices before use.

Computer Worms: Self-Propagating Malware

- **Key Characteristics**
 - Standalone malware that **doesn't need a host file**
 - **Self-replicates** automatically across networks/systems
 - Spreads by exploiting **security vulnerabilities**
- **How Worms Spread**
 - Through **network connections** (LAN/Internet)
 - Via **email attachments** or malicious links
 - Using **unpatched software vulnerabilities**
- **Primary Impacts**
 - **Network congestion:** Slows Internet/LAN traffic
 - **Resource depletion:** Consumes bandwidth & system resources
 - **Secondary payloads:** May deliver other malware
- **Protection Measures**
 - Keep all systems **patched and updated**
 - Use **firewalls** to block unauthorized traffic
 - Implement **network segmentation**
 - Educate users about **suspicious emails/links**

Trojans: Deceptive Malware

- What is a Trojan?
 - Malware disguised as harmless software (e.g., games, utilities) or hidden in legitimate apps.
 - Named after the Trojan Horse (stealthy infiltration).
- How Do Trojans Spread?
 - Social Engineering Attacks:
 - Fake downloads, malicious email attachments, and pirated software.
 - Phishing links, fake updates, or compromised websites.
 - Human-Dependent: Unlike viruses/worms, they do not self-replicate.
- Common Payloads (Harm Caused)
 - Data theft (passwords, banking info)
 - Remote system control (backdoor access)
 - Ransomware deployment
 - Turning devices into botnets
- How to Stay Protected?
 - Avoid suspicious links/attachments.
 - Download software only from trusted sources.
 - Use antivirus + firewall.
 - Keep systems & apps updated.

Ransomware: Digital Extortion Malware

- **What is Ransomware?**
 - Malware that **demands payment** (often in crypto) to:
 - **Decrypt files** (e.g., WannaCry)
 - **Prevent data leaks** (threatens to publish stolen data)
 - **Permanently delete files** (no recovery option)
- **How It Spreads**
 - **Trojans** (fake software/emails)
 - **Viruses/Worms** (e.g., WannaCry exploited Windows vulnerabilities)
- **Targeted campaigns:** Criminals research victims to maximize ransom demands.
- **Notable Example: WannaCry (2017)**
 - **Impact:** 150+ countries, 300K+ computers, \$4 billions in damages.
 - **Origin:** Likely state-sponsored (North Korea).
 - **Propagation:** Worm-like spread via unpatched Windows systems.
- **Protection & Response**
 - **Prevention:**
 - Regular **backups** (offline/cloud)
 - Patch **OS/software** promptly
 - Train users to **avoid suspicious links/attachments**
 - **If infected:**
 - Isolate systems, **do not pay** (no guarantee of recovery)
 - Report to the authorities

Scareware: Fear-Based Malware

- **What is Scareware?**
 - Malware that **uses fear tactics** to trick users into:
 - Buying **fake security software**
 - Paying for **unnecessary "system repairs"**
 - Downloading **malicious programs**
- **How It Works**
 - Displays **fake alerts/warnings** (e.g., "Virus Detected!")
 - Claims **urgent action** is needed (e.g., "Your PC is infected!")
 - Offers a **"solution"** (malicious or useless software)
- **Common Examples**
 - **Fake antivirus** pop-ups ("Your computer is at risk!")
 - **Browser lockers** ("Your PC has 5 viruses! Call this number!")
 - **Tech support scams** (e.g., "Microsoft" calling about a virus)
- **How to Avoid Scareware**
 - **Ignore unsolicited pop-ups** (never click "Fix Now")
 - **Never call the provided numbers**
 - **Use a trusted antivirus** (e.g., Windows Defender, Malwarebytes)
 - **Keep software updated** (prevents fake update scams)

Spyware: Covert Data Collection

- **What is Spyware?**
 - Malware that **secretly gathers data** without consent, including:
 - Keystrokes (**keyloggers**)
 - Camera/microphone access
 - Screen activity & browsing history
- **Common Delivery Methods**
 - **Bundled with free software** (e.g., pirated apps)
 - **Phishing links** or malicious attachments
 - **Exploiting unpatched vulnerabilities**
- **How to Protect Yourself**
 - **Avoid sideloading apps** (use official app stores)
 - **Review app permissions** (disable camera/mic access when unused)
 - **Use anti-spyware tools** (e.g., Malwarebytes, Spybot)
 - **Cover webcams** & disable unused microphones

Spyware (Malicious)	Legitimate Tracking
Installed without consent	Disclosed in terms of service (e.g., cookies, app permissions)
Hidden operations (e.g., background recording)	Limited scope (e.g., Uber location tracking only during rides)
Used for fraud/theft	Used for analytics/targeted ads

Cryptocurrency miners

- **What Are Cryptominers?**
 - Malware that **steals device processing power** (CPU/GPU) to mine cryptocurrency **without the owner's consent**.
 - Generates **crypto rewards for attackers** by solving complex math problems.
- **Why Are They Popular?**
 - **Low-cost, high-reward** for attackers:
 - No ransom demands or data theft required.
 - Easy to deploy at scale (e.g., via infected websites or malware).
 - **Proliferation:** Surged in 2017 with crypto price spikes; remains common even during market dips.
- **How They Spread**
 - **Infected downloads** (fake software, pirated apps).
 - **Malicious ads/websites** (in-browser mining via scripts).
 - **Exploiting vulnerabilities** (e.g., unpatched servers, smartphones).
- **Targets & Impact**
 - **Computers, servers, and even Android phones.**
 - **Slows devices**, increases power usage, and causes overheating.
 - **Financial motive:** Attackers profit directly from mined crypto
- **How to Stay Protected**
 - **Monitor device performance** (unusual CPU spikes = red flag).
 - **Use ad-blockers** (stop in-browser miners).
 - **Keep software updated** (patch exploits).
 - **Install anti-cryptomining tools** (e.g., Malwarebytes, NoCoin browser extension).

Adware: Advertising-Supported Software

Legitimate Adware	Malicious Adware (Adware Malware)
User knowingly installs it (e.g., free ad-supported apps)	Installed without consent (often bundled with pirated software)
Clearly disclosed in terms	Hidden, difficult to remove
Generally non-harmful	May track behavior, slow devices, or redirect to scams

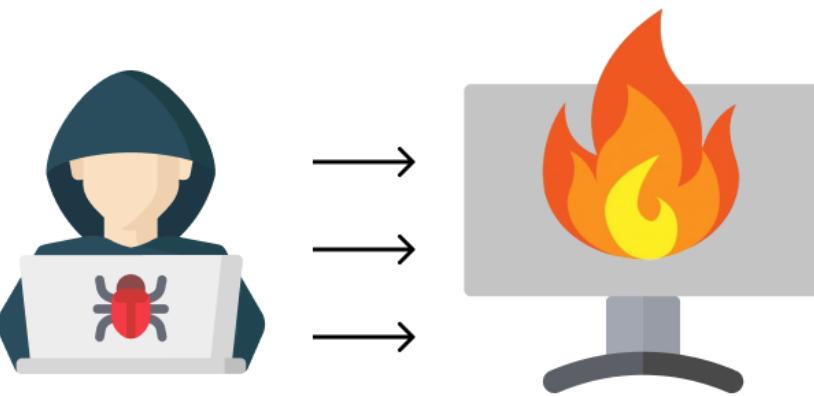
- **What is Adware?**

- Software that **displays ads** to generate revenue, existing in two forms (see the table)

- **How Malicious Adware Spreads**

- Bundled with **free downloads** (games, utilities)
- **Fake updates** or browser extensions
- Exploiting **unpatched vulnerabilities**

- **Risks of Malicious Adware**


- Excessive **pop-up ads** & browser redirects
- **System slowdowns** (high CPU/RAM usage)
- **Privacy risks** (tracking browsing habits)

- **How to Protect Against Adware**

- **Read EULAs** (End-user license agreement) before installing free software
- Use **ad-blockers** (uBlock Origin, AdGuard)
- Avoid **pirated software** and shady download sites
- Regularly **scan for adware** (Malwarebytes, AdwCleaner)

Zero-Day Malware: The Invisible Threat

Zero-Day Attack

- **Zero-Day Malware is a:**
 - Malware that exploits **unknown vulnerabilities** (not yet patched by vendors).
 - Highly effective because:
 - No defences exist yet.
 - Attacks occur **before vendors can issue fixes**.
- **Who Creates Zero-Day Malware?**
 - Nation-state actors (cyber armies, espionage).
 - **Well-funded criminal groups** (selling exploits for \$1M+ on the dark web).
 - **Advanced Persistent Threats (APTs)** (long-term targeted attacks).
- **Why is it Dangerous?**
 - **No prior detection:** Bypasses antivirus & firewalls.
 - **High success rate:** Victims have no time to prepare.
 - **Used in targeted attacks:** Espionage, sabotage, or data theft.

Zero-Day Malware: The Invisible Threat

- **Famous Examples:**
 - **Stuxnet** (sabotaged Iranian nuclear facilities)
 - **WannaCry** (exploited Windows SMB zero-day).
- **How to Reduce Risk**
 - **Advanced threat detection** (AI/behaviour-based tools).
 - Traditional security solutions often rely on recognizing known signatures of malware or attack patterns. **The AI models** is a behavior-based tools come into play.
 - **Network segmentation** (limit lateral movement).

Network segmentation is a security practice that divides a network into smaller, isolated segments.
 - **Patch ASAP** (when vendors release fixes).
 - Software and hardware vulnerabilities are constantly being discovered. Vendors regularly release patches or updates to fix these flaws. Applying these patches promptly is a fundamental security practice.
 - **Assume breaches** (zero-trust security models).
 - The traditional security model often operates on the assumption that everything inside the network perimeter is trustworthy. The "assume breach" or "zero-trust" model flips this assumption.

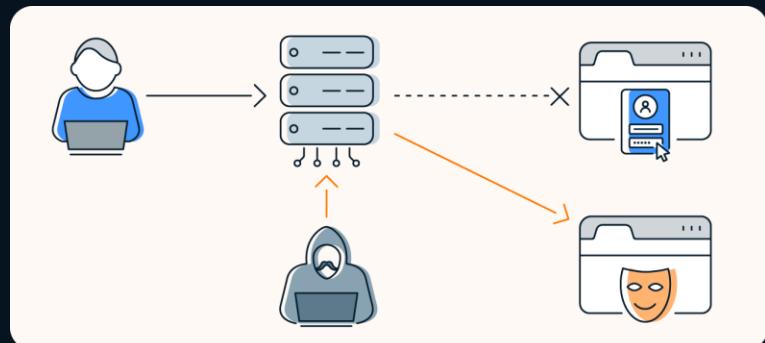
Fake Malware: The Bluff Attack

What is Fake Malware?

- **No actual infection**—just scare tactics to trick users into:
 - Paying for **fake "security services"**
 - Downloading **real malware** (disguised as a "fix")
 - Sharing **personal/financial info**

Common Delivery Methods

- **Fake pop-ups:**
 - "Virus detected! Call tech support NOW!"
 - "Your PC is at risk—click here to scan!"
- **Phishing emails:**
 - "Urgent: Your device is hacked—pay to unlock!"


How It Works

- Displays **alarming (but fake) warnings**.
- Pressures users into **quick action** (e.g., paying a fee).
- May lead to **real malware** if users click links.

How to Spot & Avoid It

- **Never trust unsolicited alerts**—close pop-ups via Task Manager (Ctrl+Shift+Esc).
- **Do not call provided numbers**—scammers impersonate Microsoft/Apple support.
- **Use real antivirus** (Windows Defender, Malwarebytes).
- **Check for actual threats**—run a legitimate scan.

Poisoned Web Service Attacks

- **Hijacked servers** deliver malware to visitors via:
 - Compromised **web pages** (e.g., injected malicious scripts).
 - Exploited **user-generated content** (e.g., comments, forms).
- **How It Works**
 1. **Server Compromise (Direct Attack):**

Hackers breach a site (e.g., www.abc123.com) and **modify its code** to infect visitors.
 2. **Cross-Site Scripting (XSS) (No Breach Needed):**

Attackers post **malicious scripts** in comments/forms. When loaded, the script **steals cookies/session data** or delivers malware.
- **Real-World Risks**
 - **Drive-by Downloads** (malware installs silently).
 - **Credential Theft** (via session hijacking).
 - **Fake Redirects** (phishing/scam sites).
- **How to Stay Protected**
 - **Use ad-blockers** (stop malicious scripts).
 - **Keep browsers updated** (patch XSS vulnerabilities).
 - **Avoid suspicious sites** (check for HTTPS & trust seals).
 - **Disable JavaScript** for untrusted sites (if possible).

The CIA Triad: Core Principles of Cybersecurity

- CIA Triad is the Foundational model for cybersecurity. Stands for: **Confidentiality, Integrity, Availability.**
- **Confidentiality:**
 - Ensures data is accessible only to authorized users.
 - Tools: Encryption, Access Controls, Multi-Factor Authentication (MFA).
- **Integrity:**
 - Ensures data is accurate and unaltered.
 - Tools: Hashing, Digital Signatures, Checksums.
- **Availability:**
 - Ensures systems/data are accessible when needed.
 - Tools: Redundancy, Backups, DDoS Protection.
- Why is the CIA Triad Important?
 - Protects sensitive data (e.g., financial, personal, government).
 - Prevents tampering, breaches, and downtime.
 - Basis for compliance (e.g., GDPR, HIPAA).

The CIA Triad: Core Principles of Cybersecurity

Real-World Examples

- Confidentiality: Healthcare records (HIPAA).
- Integrity: Blockchain transactions.
- Availability: Cloud server redundancy (AWS/Azure).

Challenges & Threats

- Confidentiality: Phishing, Data leaks.
- Integrity: Malware, Insider threats.
- Availability: Ransomware, DDoS attacks.

Conclusion

- CIA Triad is the backbone of cybersecurity.
- Balancing all three principles is key to robust security.
- Visuals to Include:
- CIA Triad diagram.

Questions