
Lect. Mohammad Salim Al-Othman 1

MOBILE APPLICATIONS

 (IT 319) IT DEPT.

TIU

3RD GRADE

OOP1 earlier

Fall 2025-26

Week 3-4

INTRO TO

FLUTTER

AND RECIPE

APP

FLUTTER

APPRENTICE

2

COURSE CONTENT

 Flutter and OOP

3

CONTENTS
 What You Need

 Introduction to Flutter

 Section I: Build Your Recipe Calculator Flutter App

4

What You
Need

5

INTRODUCTION

 Flutter is an incredible user interface (UI) toolkit that lets

you build apps for iOS and Android — and even the web

and desktop platforms like macOS, Windows and Linux

— all from a single codebase.

 Flutter has all the benefits of other cross-platform tools,

especially because you’re targeting multiple platforms

from one codebase. Furthermore, it improves upon most

cross-platform tools thanks to a super-fast rendering

engine that makes your Flutter apps perform as native

apps.

 If you’re coming from a platform like iOS or Android,

you’ll find the Flutter development experience refreshing!

Thanks to a feature called “hot reload”, you rarely need

to rebuild your apps as you develop them. A running app

in a simulator or emulator will refresh with code changes

automatically as you save your source files!

6

SECTION I:

BUILD YOUR

FIRST FLUTTER

APP

7

The chapters in this section introduce you to Flutter,
get you up and running with a Flutter development
environment and walk you through building your
first Flutter app.

You’ll learn about where Flutter came from and why
it exists, understand the structure of Flutter projects
and see how to create the UI of a Flutter app.

You’ll also get your first introduction to the key
component found in Flutter user interfaces: widgets!

WHAT IS

FLUTTER?

 In the simplest terms, Flutter is

a software development toolkit

from Google for building cross-

platform apps. Flutter apps

consist of a series of packages,

plugins and widgets — but

that’s not all.

 Flutter is a process, a

philosophy and a community as

well.

8

One thing Flutter is not is a language. Flutter uses Dart as its programming
language. If you know Kotlin, Swift, Java or Typescript, you’ll find Dart
familiar, since it’s an object-oriented C-style language.

For years, programmers have been promised the ability to write once and
run anywhere; Flutter may well be the best attempt yet at achieving that
goal.

FLUTTER SHOWCASE

Popular apps from some of the world’s

biggest companies are built with Flutter.

These include:

 Very Good Ventures

 Tencent

 Realtor.com

 Google Assistant

 New York Times

 Policygenius

 Google Stadia

 Take a look at some recent examples:
9

WHEN NOT TO USE FLUTTER

10

 Games and audio

While you can create simple 2D games using Flutter, for complex 2D and 3D games, you’d probably prefer to base your app on a cross-
platform game engine technology like Unity or Unreal. They have more domain-specific features like physics, sprite and asset management,
game state management, multiplayer support and so on. Flutter doesn’t have a sophisticated audio engine yet, so audio editing or mixing apps
are at a disadvantage over those that are purpose-built for a specific platform.

 Apps with specific native SDK needs

Flutter supports many, but not all, native features. Flutter might not be a practical choice if you are only interested in a single platform app
and you have deep knowledge of that platform’s tools and languages. For example, if you’re working with a highly-customized iOS app based on
CloudKit that uses all the native hardware, MLKit, StoreKit, extensions and so on, maintaining and taking advantage of those features will be easier
using SwiftUI. Of course, the same goes for a heavily-biased Android app using Jetpack Compose.

 Certain platforms

Flutter doesn’t run everywhere. It doesn’t support Apple Bitcode yet, which means that it doesn’t support watchOS, tvOS or certain iOS
app extensions. Its support for the web is still in its early days, which means that Flutter has many features and performance improvements
ahead of it — but they’re coming.

FLUTTER’S HISTORY

 Flutter comes from a tradition of trying to improve web performance. It’s built on top of several open-source

technologies developed at Google to bring native performance and modern programming to the web through

Chrome.

 Flutter is an open source software development kit (SDK) created by Google in 2015 with the name “Sky”. Its

alpha version was on May 2017 and it came to light on December 11, 2019 with its release version Flutter 1.12.

 The Flutter team chose the Dart language, which Google also developed, for its productivity enhancements. Its

object-oriented type system and support for reactive and asynchronous programming give it clear advantages

over Javascript. Most importantly, Google built the Dart VM into the Chrome browser, allowing web apps

written in Dart to run at native speeds.

 Another piece of the puzzle is the inclusion of Skia as the graphics rendering layer. Skia is another Google-based

open source project that powers the graphics on Android, Chrome browsers, Chrome OS and Firefox. It runs

directly on the GPU using Vulcan on Android and Metal on iOS, making the graphics layer fast on mobile

devices. Its API allows Flutter widgets to render quickly and consistently, regardless of the host platform. 11

THE FLUTTER ARCHITECTURE

 Flutter has a modular, 4 layered architecture.

 This allows you to write your application logic

once and have consistent behavior across

platforms, even though the underlying engine

code differs depending on the platform.

 The layered architecture also exposes different

points for customization and overriding, as

necessary.

12

THE FLUTTER ARCHITECTURE CONSISTS OF FOUR MAIN

LAYERS:

13

1. The Framework layer is written in Dart and contains the high-level libraries that you’ll use directly to build

apps. This includes the UI theme, widgets, layout and animations, gestures and foundational building blocks.

2. Alongside the main Flutter framework are plugins: high-level features like JSON serialization, geolocation,

camera access, in-app payments and so on. This plugin-based architecture lets you include only the features

your app needs.

3. The Engine layer contains the core C++ libraries that make up the primitives that support Flutter

apps. The engine implements the low-level primitives of the Flutter API, such as I/O, graphics, text layout,

accessibility, the plugin architecture and the Dart runtime. The engine is also responsible for rasterizing

Flutter scenes for fast rendering onscreen.

4. The Embedder is different for each target platform and handles packaging the code as a stand-alone app or

embedded module.

MAKEUP OF

THE

FRAMEWORK

LAYER:

The Flutter framework layer consists of 4 sublayers:

At the top is the UI theme, which uses either the Material

(Android) or Cupertino (iOS) design language. This affects how

the controls appear, allowing you to make your app look just

like a native one.

The widget layer is where you’ll spend the bulk of your UI

programming time. This is where you compose design and

interactive elements to make up the app.

Beneath the widgets layer is the rendering layer, which is

the abstraction for building a layout.

The foundation layer provides basic building blocks, like

animations and gestures, that build up the higher layers.

14

GETTING THE FLUTTER SDK

15

• The first step is to download the SDK. You can follow the steps on flutter.dev or jump right in

here: https://flutter.dev/docs/development/tools/sdk/releases

• One thing to note is that Flutter organizes its SDK around channels, which are different development branches. New

features or platform support will be available first on a beta channel for developers to try out. This is a great way

to get early access to certain features like new platforms or native SDK support.

• For this book and development in general, use the stable channel. That branch has been vetted and tested and has

little chance of breaking.

https://flutter.dev/docs/development/tools/sdk/releases

GETTING

EVERYTHING ELSE

 in addition to the Flutter
SDKs, you’ll need Java, the
Android SDK, the iOS SDKs
and an IDE with Flutter
extensions. To make this
process easier, Flutter
includes the Flutter
Doctor, which guides
you through installing all
the missing tools.

 Run : flutter doctor

16

EXERCISE: INSTALL AND CONFIGURE FLUTTER

• Challenge: Install Flutter SDK, set up your development environment, and run the

flutter doctor command to ensure your system is properly configured.

• Question: What does the flutter doctor command do, and why is it essential for

setting up a Flutter environment?

17

KEY POINTS

 Flutter is a software development toolkit from Google for building cross-platform apps using

the Dart programming language.

 With Flutter, you can build a high-quality app that’s performant and looks great, very quickly.

 Flutter is for both new and experienced developers who want to start a mobile app with minimal

overhead.

 Install the Flutter SDK and associated tools using instructions found at https://flutter.dev.

 The flutter doctor command helps you install and update your Flutter tools.

 This course will mostly use Visual Studio Code and Android Studio as the IDEs for Flutter
development.

18

https://flutter.dev/

SETTING UP AN

IDE

The Flutter team officially

supports three editors:

Android Studio, Visual Studio

Code and Emacs.

However, there are many other

editors that support the Dart

language, work with the Flutter

command line or have third-party

Flutter plugins.

19

TRYING IT OUT

 Downloading all the components is the hardest part of getting a Flutter app up and running. Next, you’ll try

actually building an app.

 There are two recommended ways to create a new project: with the IDE or through

the flutter command-line tool in a terminal. In this chapter, you’ll use the IDE shortcut.

20

THE TEMPLATE PROJECT

21
All the code for this app is in lib\main.dart in the default project.
Feel free to take a look at it. Throughout the rest of this book, you’ll dive into Flutter apps, widgets, state,
themes and many other concepts that will help you build beautiful apps.

Bonus: Try
hot reload

SECTION1:

CHAPTER 2

HELLO FLUTTER

 Your first task is to build a basic app from scratch, giving

you the chance to get the hang of the tools and the basic

Flutter app structure. You’ll customize the app and find out

how to use a few popular widgets

like ListView and Slider to update its UI in response to

changes.

 Creating a simple app will let you see just how quick and

easy it is to build cross-platform apps with Flutter — and it

will give you a quick win.

 By the end of the chapter, you’ll have built a lightweight

recipe app. Since you’re just starting to learn Flutter,

your app will offer a hard-coded list of recipes and let

you use a Slider to recalculate quantities based on the

number of servings.

 Here’s what your finished app will look like:

22

LIGHTWEIGHT RECIPE

APP

23

CREATING A NEW

APP

24

Creating a new project is straightforward, by click on new Flutter Project then name it as recipes

Build and run and you’ll see the same demo app as in Chapter 1, “Getting Started”.

MAKING THE
APP YOURS

25

STYLING YOUR APP

This code changes the appearance of the app:

A widget’s build() method is the entry point for composing
together other widgets to make a new widget.

A theme determines visual aspects like color. The
default ThemeData will show the standard Material defaults.

MaterialApp uses Material Design and is the widget that will be
included in RecipeApp.

The title of the app is a description that the device uses to
identify the app. The UI won’t display this.

By copying the theme and replacing the color scheme with an
updated copy lets you change the app’s colors. Here, the primary
color is Colors.grey and the secondary color is Colors.black.

This still uses the same MyHomePage widget as before, but
now, you’ve updated the title and displayed it on the device.

26

CLEARING THE

APP
A quick look at what this shows:

 A Scaffold provides the high-level

structure for a screen. In this case, you’re

using two properties.

 AppBar gets a title property by using

a Text widget that has a title passed in

from home: MyHomePage(title: 'Recipe

Calculator') in the previous step.

 body has SafeArea, which keeps the app

from getting too close to the operating

system interfaces such as the notch or

interactive areas like the Home Indicator at

the bottom of some iOS screens.

 SafeArea has a child widget, which is an

empty Container widget.

 One hot reload later, and you’re left with a

clean app:

27

BUILDING A RECIPE LIST

 An empty recipe app isn’t very useful. The app should have a

nice list of recipes for the user to scroll through. Before you

can display these, however, you need the data to fill out the

UI.

Adding a data model

 You’ll use Recipe as the main data structure for recipes in

this app.

 Create a new Dart file in the lib folder,

named recipe.dart.

 Add the following class to the file:

28

BUILDING A RECIPE LIST

This is the start of a Recipe model with a label and an

image.

 You’ll also need to supply some data for the app to

display. In a full-featured app, you’d load this data

either from a local database or a JSON-based API.

For the sake of simplicity as you get started with Flutter,

however, you’ll use hard-coded data in this chapter.

 Add the following method to Recipe by replacing

// TODO: Add List<Recipe> here with :

 This is a hard-coded list of recipes. You’ll add more detail

later, but right now, it’s just a list of names and

images.
29

BUILDING A

RECIPE LIST

 You’ve created a List with images,
but you don’t have any images in
your project yet. To add them, go
to Finder and copy
the assets folder from the top
level of 02-hello-flutter in the
book materials of your project’s
folder structure. When you’re
done, it should live at the same
level as the lib folder. That way, the
app will be able to find the images
when you run it.

 You’ll notice that by copy-pasting in
Finder, the folder and images
automatically display in the Android
Studio project list.

30

DISPLAYING THE LIST

 With the data ready to go, your next step is to create a place
for the data to go to.

 Back in main.dart, you need to import the data file so the
code in main.dart can find it. Add the following to the top
of the file, under the other import lines:

import 'recipe.dart’;

 Next, in _MyHomePageState SafeArea’s child, find and
replace // TODO: Replace child: Container() and the two
lines beneath it with:

This code does the following:

 Builds a list using ListView.

 itemCount determines the number of rows the list has. In
this case, length is the number of objects in
the Recipe.samples list.

 itemBuilder builds the widget tree for each row.

 A Text widget displays the name of the recipe.
31

DISPLAYING THE LIST

Perform a hot reload now and

you’ll see the following list:

32

PUTTING THE LIST

INTO A CARD

It’s great that you’re displaying real data now, but this is barely an app. To spice
things up a notch, you need to add images to go along with the titles.

To do this, you’ll use a Card. In Material Design, Cards define an area of
the UI where you’ve laid out related information about a specific entity.
For example, a Card in a music app might have labels for an album’s title, artist and
release date along with an image for the album cover and maybe a control for rating it
with stars.

Your recipe Card will show the recipe’s label and image. Its widget tree
will have the following structure:

33

LOOKING AT THE WIDGET TREE

34

Now’s a good time to think about the widget tree of the overall app.
Do you remember that it started with RecipeApp from main()?

To see your App
Widget Tree, in
Android Studio,
open the Flutter
Inspector from
the View ▸ Tool
Windows ▸ Flutter
Inspector menu
while your app is
running. This opens
a powerful UI
debugging tool.

MAKING IT LOOK NICE

 The default cards look okay, but they’re not as

nice as they could be.

 With a few added extras, you can spiffy the

card up.

 These include wrapping widgets in layout

widgets like Padding or specifying additional

styling parameters.

 Get started by

replacing buildRecipeCard() with:

35

MAKING IT LOOK NICE

This last slide has a few updates to look at:

 A card’s elevation determines how high off the screen the card is, affecting its
shadow.

 shape handles the shape of the card. This code defines a rounded rectangle with
a 10.0 corner radius.

 Padding insets its child’s contents by the specified padding value.

 The padding child is still the same vertical Column with the image and text.

 Between the image and text is a SizedBox. This is a blank view with a fixed size.

 You can customize Text widgets with a style object. In this case, you’ve specified
a Palatino font with a size of 20.0 and a bold weight of w700.

Hot reload and you’ll see a more styled list. 36

ADDING A RECIPE DETAIL PAGE

 You now have a pretty list, but the app
isn’t interactive yet. What would make it
great is to show the user details about a
recipe when they tap the card. You’ll start
implementing this by making the card
react to a tap.

Making a tap response

 Inside _MyHomePageState, locate //
TODO: Add GestureDetector and
replace the return statement beneath it
with the following:

37

ADDING A RECIPE DETAIL PAGE

Last Slide Note introduces a few new widgets and concepts. Looking at the lines one at a time:

 Introduces a GestureDetector widget, which, as the name implies, detects gestures.

 Implements an onTap function, which is the callback called when the widget is tapped.

 The Navigator widget manages a stack of pages. Calling push() with a MaterialPageRoute will

push a new Material page onto the stack.

 Section III, “Navigating Between Screens”, will cover navigation in a lot more detail.

 builder creates the destination page widget.

 GestureDetector’s child widget defines the area where the gesture is active.

Hot reload the app and now each card is tappable. Tap a recipe and you’ll see a black Detail page:

38

CREATING AN ACTUAL TARGET PAGE

 The resulting page is obviously just a placeholder.

Not only is it ugly, but because it doesn’t have all

the normal page trappings, the user is now stuck

here, at least on iOS devices without a back

button. But don’t worry, you can fix that!

 In lib, create a new Dart

file named recipe_detail.dart.

 Now, add this code to the file, ignore the red

squiggles:

39

CREATING AN ACTUAL TARGET PAGE

 This creates a new StatefulWidget which

has an initializer that takes the Recipe details

to display. This is

a StatefulWidget because you’ll add some

interactive state to this page later.

 You need _RecipeDetailState to build the

widget, replace

// TODO: Add _RecipeDetailState here with:

40

CREATING AN ACTUAL TARGET PAGE

The body of the widget is the same as you’ve already seen. Here are a few things to notice:

1. Scaffold defines the page’s general structure.

2. In the body, there’s a SafeArea, a Column with a Container, a SizedBox and Text children.

3. SafeArea keeps the app from getting too close to the operating system interfaces, such as the notch or the interactive
area of most iPhones.

4. One new thing is the SizedBox around the Image, which defines resizable bounds for the image. Here, the height is
fixed at 300 but the width will adjust to fit the aspect ratio. The unit of measurement in Flutter is logical pixels.

5. There is a spacer SizedBox.

6. The Text for the label has a style that’s a little different than the main Card, to show you how much customizability is
available.

Next, go back to main.dart and add the following line to the top of the file:

import 'recipe_detail.dart';

41

CREATING AN ACTUAL TARGET PAGE

42

Perform a hot restart by choosing Run ▸ Flutter Hot Restart from the
menu to set the app state back to the original list. Tapping a recipe card
will now show the RecipeDetail page.

Note: You need to use hot restart here because hot reload won’t update
the UI after you update the state.

Because you now have a Scaffold with an appBar, Flutter will automatically
include a back button to return the user to the main list.

ADDING INGREDIENTS

 To complete the detail page, you’ll need to add additional

details to the Recipe class. Before you can do that, you have

to add an ingredient list to the recipes.

 Open recipe.dart and replace // TODO: Add Ingredient()

here with the following class:

 This is a simple data container for an ingredient. It has a

name, a unit of measure — like “cup” or “tablespoon” —

and a quantity.

 At the top of the Recipe class, replace

// TODO: Add servings and ingredients here with the following:

43

ADDING INGREDIENTS

 This adds properties to specify

that serving is how many people the

specified quantity feeds and ingredients is

a simple list.

 To use these new properties, go to

your samples list inside the Recipe class

and change the Recipe constructor from:

44

ADDING INGREDIENTS

45

ADDING INGREDIENTS

46

SHOWING THE INGREDIENTS

47

Nice job, the screen now shows the recipe name and the ingredients. Next, you’ll add a feature to make it interactive.

ADDING A SERVING SLIDER

48

ADDING A SERVING SLIDER

49

UPDATING THE RECIPE

50

EXERCISE: MODIFYING THE RECIPE APP

 Challenge 1: Customize the recipe list by adding your own recipes, images, and descriptions. Replace the

hardcoded recipes with at least three of your own, including images.

 Challenge 2: Add a "favorite" feature that lets users mark a recipe as their favorite and display a star icon

beside it in the list.

 Question: What are the key differences between StatelessWidget and StatefulWidget in Flutter?

51

INTERACTIVE QUIZ

Q:What does the MaterialApp widget do in a Flutter app?

1. Handles the app’s routing

2. Specifies the app’s theme and appearance

3. Defines the high-level structure of the app

4. All of the above

Q: Which widget in Flutter is primarily used to organize the structure of a screen?

1. Scaffold

2. MaterialApp

3. AppBar

4. SafeArea

52

EXERCISE: BASIC UI EXPLORATION

 Challenge: Add a "dark mode" toggle to your recipe app. Switch between light and dark themes by modifying the
ThemeData and updating the app's color scheme.

 Question: How can you use the SafeArea widget to avoid screen cutouts like the notch on iPhones?

 Challenge: Implement a GestureDetector that allows users to swipe left or right to navigate between recipes.

 Challenge: Recipe App with CRUD Operations: Use local storage (like shared_preferences or SQLite) to save and
retrieve recipes.

 Question: What is the role of the GestureDetector widget in Flutter, and how can it be used to add interactivity to
your app?

 Question: How does the Navigator widget manage transitions between different screens in a Flutter app?

53

SUMMARY: KEY TAKEAWAYS FROM FLUTTER

DEVELOPMENT

 Building Your First App:

• Use flutter create to build new apps.

• Widgets compose the UI: every UI element is a widget in Flutter.

• Styling: Customize widgets using parameters like ThemeData, Scaffold, and Text.

 State Management:

• StatefulWidget allows for interactive features.

• Hot Restart: Restores app to its initial state.

• Hot Reload: Refreshes UI without losing the current state.

 Key Widgets:

• MaterialApp: Defines the app structure and theme.

• Scaffold: Provides the basic layout structure (AppBar, Body).

• Your Recipe App: Utilized ListView, Card, and GestureDetector to create an interactive list.
54

WHERE TO GO FROM HERE?

 Congratulations, you’ve written your first app!

 To get a sense of all the widget options available, the documentation at https://api.flutter.dev/ should be your

starting point. In particular, the Material library https://api.flutter.dev/flutter/material/material-library.html and

Widgets library https://api.flutter.dev/flutter/widgets/widgets-library.html will cover most of what you can put

onscreen. Those pages list all the parameters, and often have in-browser interactive sections where you can

experiment.

 Chapter 3, “Basic Widgets”, is all about using widgets and

 Chapter 4, “Understanding Widgets”, goes into more detail on the theory behind widgets.

 Future chapters will go into more depth about other concepts briefly introduced in this chapter.

55

https://api.flutter.dev/
https://api.flutter.dev/flutter/material/material-library.html
https://api.flutter.dev/flutter/material/material-library.html
https://api.flutter.dev/flutter/material/material-library.html
https://api.flutter.dev/flutter/widgets/widgets-library.html
https://api.flutter.dev/flutter/widgets/widgets-library.html
https://api.flutter.dev/flutter/widgets/widgets-library.html

	Slide 1: Mobile applications (IT 319)
	Slide 2: Flutter Apprentice
	Slide 3: Course Content
	Slide 4: Contents
	Slide 5: What You Need
	Slide 6: Introduction
	Slide 7: Section I: Build Your First Flutter App
	Slide 8: What is Flutter?
	Slide 9: Flutter showcase
	Slide 10: When not to use Flutter
	Slide 11: Flutter’s history
	Slide 12: The Flutter architecture
	Slide 13: The Flutter architecture consists of four main layers:
	Slide 14: makeup of the framework layer:
	Slide 15: Getting the Flutter SDK
	Slide 16: Getting everything else
	Slide 17: Exercise: Install and Configure Flutter
	Slide 18: Key points
	Slide 19: Setting up an IDE
	Slide 20: Trying it out
	Slide 21: The template project
	Slide 22: Section1: chapter 2 Hello Flutter
	Slide 23: lightweight recipe app
	Slide 24: Creating a new app
	Slide 25: Making the app yours
	Slide 26: Styling your app
	Slide 27: Clearing the app
	Slide 28: Building a recipe list
	Slide 29: Building a recipe list
	Slide 30: Building a recipe list
	Slide 31: Displaying the list
	Slide 32: Displaying the list
	Slide 33: Putting the list into a carD
	Slide 34: Looking at the widget tree
	Slide 35: Making it look nice
	Slide 36: Making it look nice
	Slide 37: Adding a recipe detail page
	Slide 38: Adding a recipe detail page
	Slide 39: Creating an actual target page
	Slide 40: Creating an actual target page
	Slide 41: Creating an actual target page
	Slide 42: Creating an actual target page
	Slide 43: Adding ingredients
	Slide 44: Adding ingredients
	Slide 45: Adding ingredients
	Slide 46: Adding ingredients
	Slide 47: Showing the ingredients
	Slide 48: Adding a serving slider
	Slide 49: Adding a serving slider
	Slide 50: Updating the recipe
	Slide 51: Exercise: Modifying the Recipe App
	Slide 52: Interactive Quiz
	Slide 53: Exercise: Basic UI Exploration
	Slide 54: Summary: Key Takeaways from Flutter Development
	Slide 55: Where to go from here?

