" Mobile Applications .
Using Flutter IT DEPT.

e K TIU
| 3RD GRADE

INTRO TO
FLUTTER
AND RECIPE
APP

Fall 2025-26

Week 3-4

FLUTTER
APPRENTICE

Flutter

yANeJelg=lgldlel=

SECOND EDITION
Learn to Build Cross-Platform Apps

By the raywenderlich Tutorial Team
Mike Katz, Kevin D. Moore, Vincent Ngo & Vincenzo Guzzi

& ___|
COURSE CONTENT

Topic
Introduction to OOP , Class diagram

C OU RS E CO NTE NT Introduction to OOP , Class diagram and Dart Packages

Section 1: Build Your First Flutter App, structure of Flutter projects, create the Ul of
a Flutter app by Widgets

Section 2: Everything’s a Widget, start to build a full-featured recipe app named
Fooderlich

Section 2: Everything’s a Widget, layout widgets, scrollable widgets and interactive
widgets

Section lll: Navigating Between Screens, routes and navigation

Midterm Exam

Midterm E
Flutter and OOP idterm Exam

Section Ill: Navigating Between Screens : deep links and URLs
Section IV: Networking, Persistence & State: Share Preference

Section IV: Networking, Persistence & State: Serialization with JSON
Section IV: Networking, Persistence & State: Networking in Flutter

Section IV: Networking, Persistence & State: Chopper Library
Section IV: Networking, Persistence & State: State Management

Final Exam
Final Exam 3

= WhatYou Need

CONTENTS * [Introduction to Flutter

= Section l: Build Your Recipe Calculator Flutter App

To follow along with this book, you'll need the following:

= Xcode 12.5.1 or later. Xcode is i0OS’s main development tool, so you need it to build
your Flutter app for iOS. You can download the latest version of Xcode from Apple’'s
developer site here: apple.co/2asi58y or from the Mac App Store. Xcode 12.5.1

What You requires a Mac running macOS Big Sur (11) or later.

Note: You also have the option of using Linux or Windows, but you won't be able to
N eed install Xcode or build apps for iOS on those platforms.

= Cocoapods 1.10.2 or later. Cocoapods is a dependency manager Flutter uses to run
code on iOS.

= Flutter SDK 2.5.1 or later. You can download the Flutter SDK from the official Flutter
site at https://flutter.dev/docs/get-started/install/macos. Installing the Flutter SDK will
also install the Dart SDK, which you need to compile the Dart code in your Flutter
apps.

= Android Studio 2020.3.1 or later, available at https://developer.android.com/studio.
This is the IDE in which you'll develop the sample code in this book. It also includes
the Android SDK and the build system for running Flutter apps on Android.

= Flutter Plugin for Android Studio 60.1.2 or later, installed by going to Android
Studio Preferences on macOS (or Settings on Windows/Linux) and choosing
Plugins, then searching for “Flutter”.

You have the option of using Visual Studio Code for your Flutter development
environment instead of Android Studio. You'll still need to install Android Studio to have
access to the Android SDK and an Android emulator. If you choose to use Visual Studio
Code, follow the instructions on the official Flutter site at https://flutter.dev/docs/get-
started/editor?tab=vscode to get set up.

Chapter 1, "Getting Started” explains more about Flutter history and architecture. You'll
learn how to start using the Flutter SDK, then you'll see how to use Android Studio and

Xcode to build and run Flutter apps. 5

= Flutter is an incredible user interface (Ul) toolkit that lets
you build apps for iOS and Android — and even the web
and desktop platforms like macOS,Windows and Linux
— all from a single codebase.

= Flutter has all the benefits of other cross-platform tools,
especially because you're targeting multiple platforms
from one codebase. Furthermore, it improves upon most

INTRODUCTION cross-platform tools thanks to a super-fast rendering

engine that makes your Flutter apps perform as native
apps.

= |f you’re coming from a platform like iOS or Android,
you'll find the Flutter development experience refreshing!
Thanks to a feature called “hot reload”, you rarely need
to rebuild your apps as you develop them.A running app
in a simulator or emulator will refresh with code changes
automatically as you save your source files!

SECTION I:
BUILD YOUR
FIRST FLUTTER
APP

The chapters in this section introduce you to Flutter,
get you up and running with a Flutter development
environment and walk you through building your
first Flutter app.

You'll learn about where Flutter came from and why

it exists, understand the structure of Flutter projects
and see how to create the Ul of a Flutter app.

You'll also get your first introduction to the key
component found in Flutter user interfaces: widgets!

WHAT IS
FLUTTER?

Multiplatform

In the simplest terms, Flutter is
a software development toolkit
from Google for building cross-
platform apps. Flutter apps
consist of a series of packages,
plugins and widgets — but
that’s not all.

Hot Open Dart :

One thing Flutter is not is a language. Flutter uses Dart as its programming
language. If you know Kotlin, Swift, Java or Typescript, you’ll find Dart
familiar, since it’s an object-oriented C-style language.

Flutter is a process, a
philosophy and a community as

well. For years, programmers have been promised the ability to write once and

run anywhere; Flutter may well be the best attempt yet at achieving that
goal.

FLUTTER SHOWCASE

7:339 Te

Book Detail

n
@
E
S

Popular apps from some of the world’s
biggest companies are built with Flutter.

HAMILTON How to connect to your lights

Orange & Yellow Fruits

-

These include: -

= Very Good Ventures o 0 <

= Tencent T

" Realtor.com : icrirdg | | - oo

Dlsney+ Ravoltionar . 90 W

= Google Assistant By e

= New York Times & - u P ——

= Policygenius \- m 2
o (L

= Google Stadia

eBay Motors BookTraps 9

= Take alook at some recent examples:

WHEN NOTTO USE FLUTTER

= Games and audio

While you can create simple 2D games using Flutter, for complex 2D and 3D games, you'd probably prefer to base your app on a cross-
platform game engine technology like Unity or Unreal. They have more domain-specific features like physics, sprite and asset management,
game state management, multiplayer support and so on. Flutter doesn’t have a sophisticated audio engine yet, so audio editing or mixing apps
are at a disadvantage over those that are purpose-built for a specific platform.

= Apps with specific native SDK needs

Flutter supports many, but not all, native features. Flutter might not be a practical choice if you are only interested in a single platform app
and you have deep knowledge of that platform’s tools and languages. For example, if you're working with a highly-customized iOS app based on
CloudKit that uses all the native hardware, MLKit, StoreKit, extensions and so on, maintaining and taking advantage of those features will be easier
using SwiftUI. Of course, the same goes for a heavily-biased Android app using Jetpack Compose.

= Certain platforms

Flutter doesn’t run everywhere. It doesn’t support Apple Bitcode yet, which means that it doesn’t support watchOS, tvOS or certain iOS
app extensions. Its support for the web is still in its early days, which means that Flutter has many features and performance improvements
ahead of it — but they’re coming.

FLUTTER’S HISTORY

= Flutter comes from a tradition of trying to improve web performance. It’s built on top of several open-source
technologies developed at Google to bring native performance and modern programming to the web through
Chrome.

= Flutter is an open source software development kit (SDK) created by Google in 2015 with the name “Sky”. Its
alpha version was on May 2017 and it came to light on December 11,2019 with its release version Flutter 1.12.

® The Flutter team chose the Dart language, which Google also developed, for its productivity enhancements. Its
object-oriented type system and support for reactive and asynchronous programming give it clear advantages
over Javascript. Most importantly, Google built the DartVM into the Chrome browser, allowing web apps
written in Dart to run at native speeds.

= Another piece of the puzzle is the inclusion of Skia as the graphics rendering layer. Skia is another Google-based
open source project that powers the graphics on Android, Chrome browsers, Chrome OS and Firefox. It runs
directly on the GPU using Vulcan on Android and Metal on iOS, making the graphics layer fast on mobile
devices. Its APl allows Flutter widgets to render quickly and consistently, regardless of the host platform. 1

THE FLUTTERARCHITECTURE

r N [2
(FLUTTER FRAMEWORK J
Dart - reactive framework with platform, High-level
: layout, foundation librari feat

= Flutter has a modular, 4 layered architecture. . SYORL, TOREATion TRISHes AN satres)
= This allows you to write your application logic

once and have consistent behavior across

e
platforms, even though the underlying engine
code differs depending on the platform. C++ - library to support primitives, rasterization, ifo,

Dart runtime, plugin architecture
= The layered architecture also exposes different

points for customization and overriding, as 2 2

necessary.

Platform Specific - turns code into app or library

THE FLUTTER ARCHITECTURE CONSISTS OF FOUR MAIN

LAYERS:

|. The Framework layer is written in Dart and contains the high-level libraries that you’ll use directly to build
apps. This includes the Ul theme, widgets, layout and animations, gestures and foundational building blocks.

2. Alongside the main Flutter framework are plugins: high-level features like JSON serialization, geolocation,
camera access, in-app payments and so on. This plugin-based architecture lets you include only the features
your app needs.

3. The Engine layer contains the core C++ libraries that make up the primitives that support Flutter
apps. The engine implements the low-level primitives of the Flutter API, such as 1/O, graphics, text layout,
accessibility, the plugin architecture and the Dart runtime.The engine is also responsible for rasterizing
Flutter scenes for fast rendering onscreen.

4. The Embedder is different for each target platform and handles packaging the code as a stand-alone app or
embedded module.

MAKEUP OF
THE

FRAMEWORK
LAYER:

The Flutter framework layer consists of 4 sublayers:

=At the top is the Ul theme, which uses either the Material
(Android) or Cupertino (iOS) design language.This affects how
the controls appear; allowing you to make your app look just
like a native one.

="The widget layer is where you’ll spend the bulk of your U
programming time.This is where you compose design and
interactive elements to make up the app.

=Beneath the widgets layer is the rendering layer, which is
the abstraction for building a layout.

=*The foundation layer provides basic building blocks, like
animations and gestures, that build up the higher layers.

GETTINGTHE FLUTTER SDK

* The first step is to download the SDK.You can follow the steps on flutter.dev or jump right in
here: https:/flutter.dev/docs/development/tools/sdk/releases

* One thing to note is that Flutter organizes its SDK around channels, which are different development branches. New
features or platform support will be available first on a beta channel for developers to try out. This is a great way
to get early access to certain features like new platforms or native SDK support.

* For this book and development in general, use the stable channel. That branch has been vetted and tested and has
little chance of breaking.

Switching Flutter channels

Flutter has three release channels: stable, beta and master.

@ The dev channel was retired as of Flutter 2.8.

We recommend using the stable channel unless you need a more recent release.

https://flutter.dev/docs/development/tools/sdk/releases

That checks for all the necessary components and provides the links or ir

GETTI NG to download ones you’'re missing.
EVERYTHING ELSE Here’s an example:

Doctor summary (to see all details, run flutter doctor —v):

[] Flutter (Channel stable, 2.5.1, on macOS 11.5 20G71 darwin—x64,
locale en—US)

[x] Android toolchain — develop for Android devices

in addition to the Flutter x Flutter requires Android SDK 30 and the Android BuildTools
SDKS, you’” need Java’the ‘ To update using sdkmanager, run:

""/Users/michael/Library/Android/sdk/tools/bin/sdkmanager"
Andr’oid SDK, the iOS SDKS “"platforms; android—30" "build—tools;30.0.2"
. or visit https:// LU er.dev/docs/get—started/i
and an IDE Wlth Flutter for detailed instructions.
)) [!] Xcode — develop for iOS and macO0OS (Xcode 12.5.1)
extenS|onS.To make th|s x CocoaPods not installed.
. CocoaPods 1is used to retrieve the i0S platform side's plugin
Process eaS|er, Flutter code that responds to your plugin usage on the Dart side.
. Without CocoaPods, plugins will not work on iOS or macOS.
|nCIUdeS the Flutter For more info, see https://f L te dev/platform—plLugins
. ° To install:
DOCtOI‘,WhICh gUIdeS sudo gem install cocoapods
° ° [x] Chrome — develop for the web (Cannot find Chrome executable at
YOU thl’OUgh InStalllng a-" /Applications/Google Chrome.app/Contents/Mac0S/Google Chrome)
!' Cannot find Chrome. Try setting CHROME_EXECUTABLE to a Chrome

the missing tools. executable.

[!'] Android Studio (not installed)

Run :ﬂUtter dOCtor [#] Connected device (the doctor check crashed)

X Due to an error, the doctor check did not complete. If the
error message below is not helpful, please let us know
about this issue at https://github.com/flutter/flLutt
x Exception: Unable to run "adb', check your Android SDK
installation and ANDROID_HOME environment variable:
/Users/michael/Library/Android/sdk/platform—tools/adb

! Doctor found issues in 4 categories.

EXERCISE:INSTALL AND CONFIGURE FLUTTER

- Challenge: Install Flutter SDK, set up your development environment, and run the
flutter doctor command to ensure your system is properly configured.

+ Question:What does the flutter doctor command do, and why is it essential for
setting up a Flutter environment!?

KEY POINTS

= Flutter is a software development toolkit from Google for building cross-platform apps using
the Dart programming language.

= With Flutter, you can build a high-quality app that’s performant and looks great, very quickly.

= Flutter is for both new and experienced developers who want to start a mobile app with minimal
overhead.

= |nstall the Flutter SDK and associated tools using instructions found at https://flutter.dev.

" The flutter doctor command helps you install and update your Flutter tools.

= This course will mostly use Visual Studio Code and Android Studio as the IDEs for Flutter
development.

https://flutter.dev/

SETTING UP AN
IDE

The Flutter team officially
supports three editors:

Android Studio,Visual Studio
Code and Emacs.

However, there are many other
editors that support the Dart
language, work with the Flutter
command line or have third-party
Flutter plugins.

M Android Studio
Arctic Fox | 2020.3.1 Pa...
Projects
Customize
Plugins

Learn Android Studio

Welcome to Android Studio

Welcome to Android Studio

Create a new project to start from scratch.
Open existing project from disk or version control.

+ < ~
New Project Create New Flutter Project Open

More Actions v

= Downloading all the components is the hardest part of getting a Flutter app up and running. Next, you’ll try
actually building an app.

= There are two recommended ways to create a new project: with the IDE or through
the flutter command-line tool in a terminal. In this chapter, you’ll use the IDE shortcut.

[NeN) New Project
4 Flutter App Flutter SDK path: /Applications/flutter V:

* Flutter Module

% Flutter Plugin Help: Getting started with your first Flutter app.

£ Flutter Package Project type: Select an "Application" when building for end users.
X Select a "Module" when creating a Flutter component to add to an Android or iOS app.
= Empty Project ,

Select a "Plugin" when exposing an Android or iOS API for developers.

Select a "Package" when creating a pure Dart component, like a new Widget.

Previous Next

7 Cancel

Project na

me:

Project location:

Description:

Organizati

Android language:

on:

iOS language:

Platforms:

» More Settings

?

Cancel

New Project
flutter_app
~[/Desktop/flutter_app
A new Flutter app.
com.raywenderlich

Java © Kotlin

Objective-C O swift

Android [i0S | Linux | MacOS | | Web | Windows

Platform availability might depend on your Flutter SDK channel,
and which desktop platforms have been enabled.

Additional desktop platforms can be enabled by, for example, running
"flutter config --enable-linux-desktop" on the command line.

When created, the new project will run on the selected platforms (others can be added later).

Create project offline

20

Previous

THETEMPLATE PROJECT

1.Getting Started

The template project

The default new project is the same in either editor. It's a simple Flutter demo. The demo
app counts the humber of times you tap a button.

@l Carrier & 10:11 PM of#
QGQ
Flutter Demo Home Page
To give it a try, select a connected device, an iOS simulator or an Android emulator.
flutter_app [~/flutter_app/flutter_app] - .../lib,
L) <no devices> =
‘s main.dart
import ‘'package:flutter/material.dart’;
‘: void main() {
Bonus: Try runApp(MyApp());
}
hot reload
) Devices }o

% main.dart « No Dwyices
Open Android Emulator: Nexus 5 API 22 x86
Launch the app by clicking the Run icon:
: 3% N
Hot Reload

——

You have pushed the button this many times:
0
< Main.dart = No Devices @
Run’
following:
All the code for this app is in lib\main.dart in the default project.

it might take a while to compile and launch the first time. When you're done, you’'ll see the

Feel free to take a look at it. Throughout the rest of this book, you’ll dive into Flutter apps, widgets, state,
themes and many other concepts that will help you build beautiful apps.

21

SECTIONI:

CHAPTER 2
HELLO FLUTTER

Your first task is to build a basic app from scratch, giving
you the chance to get the hang of the tools and the basic
Flutter app structure.You'll customize the app and find out
how to use a few popular widgets

like ListView and Slider to update its Ul in response to
changes.

Creating a simple app will let you see just how quick and
easy it is to build cross-platform apps with Flutter — and it
will give you a quick win.

By the end of the chapter, you'll have built a lightweight
recipe app. Since you're just starting to learn Flutter,
your app Wwill offer a hard-coded list of recipes and let
you use a Slider to recalculate quantities based on the
number of servings.

Here’s what your finished app will look like:

22

Spaghetti and Meatballs

P

Taco Salad

Taco Salad

16.0 oz nachos

12.0 oz taco meat

2.0 cup cheese

1.0 cup chopped tomatoes

LIGHTWEIGHT RECIPE

N

Creating a new project is straightforward, by click on new Flutter Project then name it as recipes

| BON] recipes — main.dart [recipes]
recipes lib = {5 main.dart sdk gphone x86 (mobile) + % main.dart ¥ LPixel2API30O v > #¥ T @ B % E DL Y Q
= Project ¥ D = ¥ — [amaindart y
v [arecipes ~/Desktop/recipes 1 import 'package:flutter/material.dart’; viZ ‘ REA I I N G A N Ew
» B dart_tool 2)
> Iz idea 3 » void main() { 2 0:33 = e,
[z android [recipes_android] 4 runApp(MyApp()); g AP P
& » Fsbuild 5 } g Flutter Demo Home Page
5 » [lios 6
2 v lib . %
o ! 7 class MyApp extends StatelessWidget { =
3 “amain.dart 8 // This widget is the root of your application. %
g r Fitest 9 @override 5
N > . . .
e ?Web 10 ef Widget build(BuildContext context) { %
;'g't'tgn:rf 11 return MaterialApp(®
= metacata 12 title: 'Flutter Demo',|
2 .packages 74
. 13 theme: ThemeData(-
2 pubspec.lock o o z
e 14 // This is the theme of your application. =
e Pubspec.yaml @
o README.md 15 // 3
@ I recipes.iml 16 // Try running your application with "flutter run". You'll see the g
§ » 1l External Libraries 17 // application has a blue toolbar. Then, without quitting the app, try 3
% Yo Scratches and Consoles 18 // changing the primarySwatch below to Colors.green and then invoke 3 You have pushed the button this many times:
E 19 // "hot reload" (press "r" in the console where you ran "flutter run", 0
) 20 // or simply save your changes to "hot reload" in a Flutter IDE). 0
21 // Notice that the counter didn't reset back to zero; the application Q_
< 22 // is not restarted. =
S 23 1 primarySwatch: Colors.blue, g
& 24), // ThemeData
: 25 — home: MyHomePage(title: 'Flutter Demo Home Page'), E
26)i // MaterialApp <
Q
3 27 } e
s 28 } &
m
8 29 3
:" 30 class MyHomePage extends StatefulWidget { c_g.:
31
= 6: Logcat = Database Inspector @ Profiler = TODO Terminal @ Dart Analysis () Event Log I§ Layout Inspector
&I * daemen started successfully 12:29 LF UTF-8 2spaces W & |

Build and run and you’ll see the same demo app as in Chapter 1, “Getting Started”.

The ready-made app is a good place to start because the flutter create command
puts all the boilerplate together for you to get up and running. But this is not your app. It's
literally MyApp, as you can see near the top of main.dart:

MAKING THE
APPYOURS

class MyApp extends StatelessWidget {

This defines a new Dart class named MyApp which extends — or inherits from —

StatelessWidget . In Flutter, almost everything that makes up the user interface is a
Widget. A StatelessWidget doesn't change after you build it. You'll learn a lot more
about widgets and state in the next section. For now, just think of MyApp as the container
for the app.

Since you're building a recipe app, you don't want your main class to be named MyApp
— you want it to be RecipeApp .

While you could change it manually in multiple places, you'll reduce the chance of a copy-
and-paste error or typo by using the IDE's rename action instead. This lets you rename a
symbol at its definition and all its callers at the same time.

25

STYLING YOUR APP

Widget build(BuildContext context) {

1
J

final ThemeData theme = ThemeDatal();

return MaterialApp(

);

title: 'Recipe Calculator',

theme: theme.copyWith(
colorScheme: theme.colorScheme.copyWith(
primary: Colors.grey,
secondary: Colors.black,

home: const MyHomePage(title: 'Recipe Calculator'),

This code changes the appearance of the app:

=A widget’s build() method is the entry point for composing
together other widgets to make a new widget.

=A theme determines visual aspects like color.The
default ThemeData will show the standard Material defaults.

=Material App uses Material Design and is the widget that will be
included in RecipeApp.

"The title of the app is a description that the device uses to
identify the app.The Ul won’t display this.

=By copying the theme and replacing the color scheme with an
updated copy lets you change the app’s colors. Here, the primary
color is Colors.grey and the secondary color is Colors.black.

= This still uses the same MyHomePage widget as before, but
now, you've updated the title and displayed it on the device.

CLEARING THE

APP Widget build(BuildContext context) {

Recipe Calculator

A quick look at what this shows:

A Scaffold provides the high-level
structure for a screen. In this case, you're
using two properties.

AppBar gets a title property by using
a Text widget that has a title passed in
from home: MyHomePage(title: 'Recipe
Calculator') in the previous step.

body has SafeArea, which keeps the app
from getting too close to the operating
system interfaces such as the notch or
interactive areas like the Home Indicator at
the bottom of some iOS screens.

SafeArea has a child widget, which is an
empty Container widget.

One hot reload later, and you're left with a
clean app:

return Scaffold(

appBar: AppBar(
title: Text(widget.title),
) s

IUDU: RepLlace

body: SafeAreal

child: Container(),
) s
Ik

BUILDING A RECIPE LIST

= An empty recipe app isn’t very useful. The app should have a class Recipe {
nice list of recipes for the user to scroll through. Before you String label;
can display these, however, you need the data to fill out the >tring _lmageUr"l;
Ul / 10D0: Ad r

Adding a data model

Recipe(

’ this. label,
= You'll use Recipe as the main data structure for recipes in

this app.

this.imageUrl,

)'
’

= Create a2 new Dart file in the lib folder,
named recipe.dart.

= Add the following class to the file:

28

BUILDING A RECIPE LIST

This is the start of a Recipe model with a label and an
image.

= You'll also need to supply some data for the app to
display. In a full-featured app, you’d load this data
either from a local database or a [SON-based API.
For the sake of simplicity as you get started with Flutter,
however, you'll use hard-coded data in this chapter.

= Add the following method to Recipe by replacing
//TODO: Add List<Recipe> here with :

= This is a hard-coded list of recipes.You’ll add more detail
later, but right now, it’s just a list of names and

images. Y

static List<Recipe> samples = [
Recipe(
‘Spaghetti and Meatballs',
‘assets/2126711929 _ef763de2b3_w.jpg',
)»
Recipe(
‘Tomato Soup',
‘assets/27729023535_a57606¢clbe. jpg’,
)»
Recipe(
'‘Grilled Cheese',
‘assets/3187380632_5056654a19_b.jpg’,
)»

Recipe(
‘Chocolate Chip Cookies',
‘assets/15992102771_b92f4cc@@a_b.jpg’,

b
Recipe(
'Taco Salad',
‘assets/8533381643_a31a99e8a6_c.jpg’,
)
Recipe(
‘Hawalian Pizza',
‘assets/15452035777_294cefced5_c.jpg’,

Project « b= o -

H
BUILDING A E T e recipes ~/
[]

RECI PE LIST I android [recipes_android]
- = L los
g v b= lib
You've created a List with images, = a main.dart
but you don't have any images in

your project yet.To add them, go
to Finder and copy
the assets folder from the top

But just adding assets to the project doesn't display them in the app. To tell the app

level of 02-hello-flutter in the to include those assets, open pubspec.yaml in the recipes project root folder.

book materials of your project’s
folder structure.When you’re Under # To add assets to your application... add the following lines:
done, it should live at the same
level as the lib folder.That way, the
app will be able to find the images
when you run it.

assets:

— assets/

YF’U’II notice that by copy-pasting in These lines specify that assets/ is an assets folder and must be included with the
Finder, the folder and images

automatically display in the Android _ _
Studio project list. true line above it.

app. Make sure that the first line here is aligned with the uses-material-design:

30

DISPLAYING THE LIST

= WWith the data ready to go, your next step is to create a place
for the data to go to.

= Back in main.dart, you need to import the data file so the
code in main.dart can find it.Add the following to the top
of the file, under the other import lines:

child: ListView.builder(

import 'recipe.dart’; 1temCount: Recipe.samples. length,
= Next, in _MyHomePageState SafeArea’s child, find and

replace // TODO: Replace child: Container() and the two
lines beneath it with:

itemBuilder: (BuildContext context, int index) {

This code does the following: [0D0: Update to return Recipe card
= Builds a list using ListView. return Text(Recipe.samples[index].label);
= jtemCount determines the number of rows the list has. In

this case, length is the number of objects in
the Recipe.samples list.

= jtemBuilder builds the widget tree for each row. 5

= A Text widget displays the name of the recipe.

DISPLAYING THE LIST

Recipe Calculator

Spaghetti and Meatballs
Tomato Soup

Grilled Cheese
Chocolate Chip Cookies
Taco Salad

Hawaiian Pizza

Perform a hot reload now and
you’ll see the following list:

32

It’s great that you're displaying real data now, but this is barely an app.To spice
things up a notch, you need to add images to go along with the titles.

PUTTING THE LIST To do this, you'll use a Card. In Material Design, Cards define an area of
the Ul where you’ve laid out related information about a specific entity.
INTO A CARD For example, a Card in a music app might have labels for an album'’s title, artist and

release date along with an image for the album cover and maybe a control for rating it
with stars.

Your recipe Card will show the recipe’s label and image. Its widget tree
will have the following structure:

In main.dart, at the bottom of _MyHomePageState create a custom widget by

(Card A replacing // TODO: Add buildRecipeCard() here with:
s ~
Column _ , _ : _
Widget buildRecipeCard(Recipe recipe) {
Image // 1
. return Card(
Recipe Image o 5 s
J 2
child: Column(
e N ,
Text children: <Widget>[
Recipe Label // 4
N / Image(image: AssetImage(recipe.imageUrl)),
- ~ Text(recipe. label),

LOOKING AT THE WIDGET TREE

Now’s a good time to think about the widget tree of the overall app. o,)
Do you remember that it started with RecipeApp from main()? p N
MaterialApp
Flutter Inspector D iPhone 12 Pro Max (mobile) o — - N
% c G I o AA & M MyHomePage
~ [[root] rScaffold)
v @ RecipeApp
To see your A v @ MaterialApp - A
. Y pp v @ MyHomePage ListView
Widget Tree, in « = Scaffold r)
Android StUdiO, _vv.EsaEz?\r/?gw \RecipeCard)
open the Flutter - v & Card 4 N
v H Column RecipeCard
Inspector from M Image \ y
. — [@ Text: "Spaghetti and Meatballs" s N
the VIEW > TOOI -+ = Card RecipeCard
Windows »> Flutter ~ B Column \ J
— M Image _ -
Inspector menu — @ Text: "Tomato Soup’ - ~
. . - v & Card
while your app is < B Column e)
i i — M Image
running. ThIS Opens — Text: "Grilled Cheese" L \ / B 3
a powerful Ul -+ @ AppBar .)
Text: "Recipe Calculator” _ Y,

debugging tool.

Widget buildRecipeCard(Recipe recipe) {
return Card(
o

MAKING IT LOOK NICE clevation: 2.0,

shape: RoundedRectangleBorder(
borderRadius: BorderRadius.circular(10.0)),

chiid: Padding(
" The default cards look okay, but they’re not as padding: const EdgeInsets.all(16.0),

nice as they could be. child: Column(
children: <Widget>|
= With a few added extras, you can sprffy the Image(image: AssetImage(recipe.imageUrl)),

card up. const SizedBox(
height: 14.0,

= These include wrapping widgets in layout b
widgets like Padding or specifying additional Text(

. recipe. label,
St)'hng parameters. style: const TextStyle(

fontSize: 20.0,

= Get started b)’ fontWeight: FontWeight.w700,
replacing buildRecipeCard() with: Rl e

Recipe Calculator

MAKING IT LOOK NICE

This last slide has a few updates to look at:

= A card’s elevation determines how high off the screen the card is, affecting its -
S h ad OoWwW. Spaghetti and Meatballs

= shape handles the shape of the card. This code defines a rounded rectangle with
a 10.0 corner radius.

= Padding insets its child’s contents by the specified padding value.
= The padding child is still the same vertical Column with the image and text.
= Between the image and text is a SizedBox.This is a blank view with a fixed size.

= You can customize Text widgets with a style object. In this case, you've specified
a Palatino font with a size of 20.0 and a bold weight of w700.

Hot reload and you’ll see a more styled list. 3

ADDING A RECIPE DETAIL PAGE

= You now have a pretty list, but the app

isn’t interactive yet.VWhat would make it
great is to show the user details about a
recipe when they tap the card.You'll start
implementing this by making the card
react to a tap.

Making a tap response

Inside _MyHomePageState, locate //
TODO:Add GestureDetector and
replace the return statement beneath it
with the following:

return GestureDetector(
onTap: () {
Navigator.push(
context,
MaterialPageRoute(

builder: (context) {

return Text('Detail page');

child: buildRecipeCard(Recipe.samples[index]),

ADDING A RECIPE DETAIL PAGE

Last Slide Note introduces a few new widgets and concepts. Looking at the lines one at a time:
" Introduces a GestureDetector widget, which, as the name implies, detects gestures.
® Implements an onTap function, which is the callback called when the widget is tapped.

= The Navigator widget manages a stack of pages. Calling push() with a MaterialPageRoute will
push a new Material page onto the stack.

= Section lll,Navigating Between Screens”, will cover navigation in a lot more detail.
» builder creates the destination page widget.
= GestureDetector’s child widget defines the area where the gesture is active.

Hot reload the app and now each card is tappable. Tap a recipe and you'll see a black Detail page:

38

CREATING AN ACTUAL TARGET PAGE

import 'package:flutter/material.dart’;
import 'recipe.dart';
= The reSUItmg page Is ObVIOUSIY Justa PlacehOIder' class RecipeDetail extends StatefulWidget {
Not only is it ugly, but because it doesn’t have all final Recipe recipe;
the normal page trappings, the user is now stuck | ,
. - . const RecipeDetail({
here, at least on iOS devices without a back Key? key
button. But don’t worry, you can fix that! required this.recipe,

super(key: key);

= |In lib, create a new Dart

file named recipe_detail.dart. : |
_RecipeDetailState createState() {

= Now, add this code to the file, ignore the red _ (EtEn _RecipepEtadists sl
squiggles: :

39

CREATING AN ACTUAL TARGET PAGE

class _RecipeDetailState extends State<RecipeDetail> {

wWidget build(BuildContext context) {

return Scaffold(

= This creates a new StatefulWidget which
has an initializer that takes the Recipe details Rite: et (wadset. recipe. Laben),
to display. This is A ey
a StatefulWidget because you'll add some child: Column(

children: <Widget>[

interactive state to this page later. < TR
height: =z
° ° . width: c e.infinity,
" You need RecipeDetailState to build the child: Image(T
— image: AssetImage(widget.recipe.imageUrl),

),

widget, replace),

const SizedBox(

//TODO:Add _RecipeDetailState here with: height: 4,

),

Text(
widget.recipe. label,
style: const TextStyle(fontSize: 18),

40

CREATING AN ACTUAL TARGET PAGE

The body of the widget is the same as you’ve already seen. Here are a few things to notice:
I. Scaffold defines the page’s general structure.
2. In the body, there’s a SafeArea, a Column with a Container, a SizedBox and Text children.

3. SafeArea keeps the app from getting too close to the operating system interfaces, such as the notch or the interactive
area of most iPhones.

4. One new thing is the SizedBox around the Image, which defines resizable bounds for the image. Here, the height is
fixed at 300 but the width will adjust to fit the aspect ratio. The unit of measurement in Flutter is logical pixels.

5. There is a spacer SizedBox.

6. The Text for the label has a style that’s a little different than the main Card, to show you how much customizability is
available.

Next, go back to main.dart and add the following line to the top of the file:
import 'recipe_detail.dart’;

41

CREATING AN ACTUAL TARGET PAGE

Then find // TODO: Replace return with return RecipeDetail() replace it
and the existing return statement with:

Spaghetti and Meatballs

return RecipeDetail(recipe: Recipe.samples[index]);

Perform a hot restart by choosing Run > Flutter Hot Restart from the
menu to set the app state back to the original list. Tapping a recipe card
will now show the RecipeDetail page.

Note: You need to use hot restart here because hot reload won’t update
the Ul after you update the state.

Because you now have a Scaffold with an appBar, Flutter will automatically
include a back button to return the user to the main list.

42

ADDING INGREDIENTS

= To complete the detail page, you’ll need to add additional
details to the Recipe class. Before you can do that, you have
to add an ingredient list to the recipes.

class Ingredient {
double quantity;

= Open recipe.dart and replace // TODO:Add Ingredient() ik e s
here with the following class: 2LIF1Ng nName,
= This is a simple data container for an ingredient. It has a _
name, a unit of measure — like “cup” or “tablespoon” — Ingredient(
and a quantity. this.quantity,
= At the top of the Recipe class, replace this.measure,
[/ TODO:Add servings and ingredients here with the following: this.name,

int servings;

List<Ingredient> ingredients;

ADDING INGREDIENTS

Recipe(
this. label,

= This adds properties to specify ~ this.imageUrl,
that serving is how many people the .
specified quantity feeds and ingredients is

. . to:
a simple list.
= To use these new properties, go to Recipe(
I I t . d th R . | this. label,
your samples list inside the Recipe class this. imageUrL,
and change the Recipe constructor from: this.servings,

this.1ingredients,

44

ADDING INGREDIENTS

You'll see red squiggles under part of your code because the values for servings
and ingredients have not been set. You'll fix that next.

Recipe(
this.label,
this.imageUr1,
this,servings,
this,ingredients,
);

static List<Recipe> samples = [

Recipe(
‘Spaghetti and Meatballs',
'assets/2126711929 ef763de2b3 w.jpe’,

oot

Recipe(
'Tomato Soup',
'assets/27729023535 a57606¢1be.jpg’,

Toinclude the new servings and ingredients properties, replace the existing
samples definition with the following:

static List<Recipe> samples = |

Recipe(
'Spaghetti and Meatballs',
‘assets/2126711929_ef763de2b3_w.jpg’,
4,
[
Ingredient(1, 'box', 'Spaghetti',),
Ingredient(4, '', 'Frozen Meatballs',),
Ingredient(0.5, 'jar', 'sauce',),
| -
i
Recipe(
‘Tomato Soup',
'assets/27729023535_a57606clbe.jpg’,

Ingredient(1, 'can', 'Tomato Soup',),

45

ADDING INGREDIENTS

That fills out an ingredient list for these items. Please don’t cook these at home,

these are just examples. :]

Hot reload the app now. No changes will be visible, but it should build successfully.

Spaghetti and Meatballs

Spaghetti and Meatballs

46

SHOWING THE INGREDIENTS

A recipe doesn’t do much good without the ingredients. Now, you're ready to add a This code adds:
widget to display them.

7. An Expanded widget, which expands to fill the space ina Column . This way,
the ingredient list will take up the space not filled by the other widgets.

In recipe_detail.dart, replace // TOD0: Add Expanded with: 8./ CEELE), Withione row peringredient.

9. A Text that uses string interpolation to populate a string with runtime values.
You use the ${expression} syntax inside the string literal to denote these.

: " Hot restart by choosing Run » Flutter Hot Restart and navigate to a detail page to

Expanded (. .
see the ingredients.
child: ListView.builder(

padding: const EdgeInsets.all(7.0),

itemCount: widget.recipe.ingredients. length,

itemBuilder: (BuildContext context, int index) {

final ingredient = widget.recipe.ingredients[index];

tti and Meatballs

return Text(

'${ingredient.quantity} ${ingredient.measure}
${ingredient.name}');

1
Iy

47

Nice job, the screen now shows the recipe name and the ingredients. Next, you’ll add a feature to make it interactive.

ADDING A SERVING SLIDER

_ _ ' . , Now find // TODO: Add Slider() here replace it with the following:
You're currently showing the ingredients for a suggested serving. Wouldn't it be

great if you could change the desired quantity and have the amount of ingredients Slider(
update automatically? min: 1,
max: 10,

divisions: 10,

You'll do this by adding a Slider widget to allow the user to adjust the number of
Servings.

label: '${_sliderVal *x widget.recipe.servings} servings',
value: _sliderVal.toDouble(),

onChanged: (newValue) {

First, create an instance variable to store the slider value at the top of eteratell)
_RecipeDetailState by replacing // TODO: Add _sliderVal here :

_sliderVal = newValue.round();

activeColor: Colors.green,
inactiveColor: Colors.black,

int _sliderVal = 1;

48

ADDING A SERVING SLIDER

Slider presents around thumb that can be dragged along a track to change a
value. Here's how it works:

0. Youuse min , max and divisions to define how the slider moves. In this
case, it moves between the values of 1 and 10, with 10 discreet stops. That is, it
can only have values of 1, 2, 3, 4,5, 6, 7, 8, 9 or 10.

1. label updates asthe _sliderVal changes and displays a scaled number of
servings.

2. The slider works in double values, so this converts the int variable.

| 3. Conversely, when the slider changes, this uses round() to convertthe
double slider value to an int , thensavesitin _sliderval .

4. This sets the slider’s colors to something more “on brand”. The activeColor is
the section between the minimum value and the thumb, and the
inactiveColor represents the rest.

Hot reload the app, adjust the slider and see the value reflected in the indicator.

2
%
%
%

Spaghetti and Meatballs

Spaghetti and Meatballs

1.0 box Spaghetti
4.0 Frozen Meatballs
0.5 jar sauce

49

UPDATING THE RECIPE

It's great to see the changed value reflected in the slider, but right now, it doesn’t
Hawaiian Pizza

affect the recipe itself.

To do that, you just have to change the Expanded ingredients itemBuilder
return statement to include the current value of _sliderVal as a factor for each
ingredient.

Replace // TODO: Add ingredient.quantity andthe whole return statement
beneath it with: Hawaiian Pizza

4.0 item pizza
4.0 cup pineapple
32.0 oz ham

return Text('${ingredient.quantity *x _sliderVal}

'${ingredient.measure}
'${ingredient.name}"');

After a hot reload, you'll see that the recipe’s ingredients change when you move

the slider.
That's it! You've now built a cool, interactive Flutter app that works just the same on m
iOS and Android. ® ‘0

In the next few sections, you'll continue to explore how widgets and state work.
You'll also learn about important functionality like networking.

EXERCISE: MODIFYING THE RECIPE APP

= Challenge I: Customize the recipe list by adding your own recipes, images, and descriptions. Replace the

hardcoded recipes with at least three of your own, including images.

= Challenge 2:Add a "favorite" feature that lets users mark a recipe as their favorite and display a star icon

beside it in the list.

= Question:What are the key differences between StatelessWidget and StatefulWidget in Flutter?

51

INTERACTIVE QUIZ

Q:What does the Material App widget do in a Flutter app?

|. Handles the app’s routing

2. Specifies the app’s theme and appearance
3. Defines the high-level structure of the app
4. All of the above

Q:Which widget in Flutter is primarily used to organize the structure of a screen?

|. Scaffold
2. Material App
3. AppBar

4. SafeArea

52

EXERCISE: BASIC Ul EXPLORATION

= Challenge:Add a "dark mode" toggle to your recipe app. Switch between light and dark themes by modifying the
ThemeData and updating the app's color scheme.

= Question: How can you use the SafeArea widget to avoid screen cutouts like the notch on iPhones?

= Challenge: Implement a GestureDetector that allows users to swipe left or right to navigate between recipes.

= Challenge: Recipe App with CRUD Operations: Use local storage (like shared_preferences or SQL.ite) to save and
retrieve recipes.

= Question:What is the role of the GestureDetector widget in Flutter, and how can it be used to add interactivity to
your app!

53
= Question: How does the Navigator widget manage transitions between different screens in a Flutter app?

SUMMARY: KEY TAKEAWAYS FROM FLUTTER

DEVELOPMENT

= Building Your First App:
* Use flutter create to build new apps.
* Widgets compose the Ul: every Ul element is a widget in Flutter.
* Styling: Customize widgets using parameters like ThemeData, Scaffold, and Text.
= State Management:
« StatefulWidget allows for interactive features.
* Hot Restart: Restores app to its initial state.
* Hot Reload: Refreshes Ul without losing the current state.
= KeyWidgets:
* Material App: Defines the app structure and theme.
« Scaffold: Provides the basic layout structure (AppBar, Body).

54
* Your Recipe App: Utilized ListView, Card, and GestureDetector to create an interactive list.

WHERETO GO FROM HERE?

= Congratulations, you’ve written your first app!

= To get a sense of all the widget options available, the documentation at https://api.flutter.dev/ should be your
starting point. In particular, the Material library https://api.flutter.dev/flutter/material/material-library.html and
Widgets library https://api.flutter.dev/flutter/widgets/widgets-library.html will cover most of what you can put
onscreen.Those pages list all the parameters, and often have in-browser interactive sections where you can
experiment.

= Chapter 3,“Basic Widgets”, is all about using widgets and
= Chapter 4,“Understanding Widgets”, goes into more detail on the theory behind widgets.

= Future chapters will go into more depth about other concepts briefly introduced in this chapter.

55

https://api.flutter.dev/
https://api.flutter.dev/flutter/material/material-library.html
https://api.flutter.dev/flutter/material/material-library.html
https://api.flutter.dev/flutter/material/material-library.html
https://api.flutter.dev/flutter/widgets/widgets-library.html
https://api.flutter.dev/flutter/widgets/widgets-library.html
https://api.flutter.dev/flutter/widgets/widgets-library.html

	Slide 1: Mobile applications (IT 319)
	Slide 2: Flutter Apprentice
	Slide 3: Course Content
	Slide 4: Contents
	Slide 5: What You Need
	Slide 6: Introduction
	Slide 7: Section I: Build Your First Flutter App
	Slide 8: What is Flutter?
	Slide 9: Flutter showcase
	Slide 10: When not to use Flutter
	Slide 11: Flutter’s history
	Slide 12: The Flutter architecture
	Slide 13: The Flutter architecture consists of four main layers:
	Slide 14: makeup of the framework layer:
	Slide 15: Getting the Flutter SDK
	Slide 16: Getting everything else
	Slide 17: Exercise: Install and Configure Flutter
	Slide 18: Key points
	Slide 19: Setting up an IDE
	Slide 20: Trying it out
	Slide 21: The template project
	Slide 22: Section1: chapter 2 Hello Flutter
	Slide 23: lightweight recipe app
	Slide 24: Creating a new app
	Slide 25: Making the app yours
	Slide 26: Styling your app
	Slide 27: Clearing the app
	Slide 28: Building a recipe list
	Slide 29: Building a recipe list
	Slide 30: Building a recipe list
	Slide 31: Displaying the list
	Slide 32: Displaying the list
	Slide 33: Putting the list into a carD
	Slide 34: Looking at the widget tree
	Slide 35: Making it look nice
	Slide 36: Making it look nice
	Slide 37: Adding a recipe detail page
	Slide 38: Adding a recipe detail page
	Slide 39: Creating an actual target page
	Slide 40: Creating an actual target page
	Slide 41: Creating an actual target page
	Slide 42: Creating an actual target page
	Slide 43: Adding ingredients
	Slide 44: Adding ingredients
	Slide 45: Adding ingredients
	Slide 46: Adding ingredients
	Slide 47: Showing the ingredients
	Slide 48: Adding a serving slider
	Slide 49: Adding a serving slider
	Slide 50: Updating the recipe
	Slide 51: Exercise: Modifying the Recipe App
	Slide 52: Interactive Quiz
	Slide 53: Exercise: Basic UI Exploration
	Slide 54: Summary: Key Takeaways from Flutter Development
	Slide 55: Where to go from here?

