Mobile Applications\
- Using Flutter

= APPS

An Invoduction

Weelk |-2

Syllabus List

(Does not effect minor grades. The information is presented from syllabus)

Method Quantity Percentage (%) Homework#2#5
Quiz 2 5
Homework 2 5
Project 1 15
Midterm Exam 1 20
Laboratory 1 5
Total 60
CONTENTS
= Key facts

= Trending Programming Languages 2023
= OOP languages

= OOP Features

= UML Diagram

= OOP Dart examples

COURSE/STUDENT LEARNING OUTCOMES:

1.

2.

3.

4.

Enhanced grasp of OOP principles.
Apply OOP conceptsin Dart and Flutter to build Mobile Apps.
Implement OOP in Flutter Apps.

Foster teamwork by developing real-world projects.

Learning Outcomes

Degree
Level

Outcomes

Lesson
Outcome

<4

EEEEE

CONTENT —~

® Introduction to OOP , Class diagram with Dart Packages

= Build Your First Flutter App and Everything’s a Widget, start to build a
full-featured recipe app named Fooderlich

= Finish building the full-featured recipe app named Fooderlich and
Understanding widgets and Stateless widgets and build our personal
profile application (HW1)

= Application bar, list view and build a custom widget(HW?2)
= Handle user input and Handle gestures and responsive design

= Material Design, Build for Android and iOS platforms, Colors and
Themes

Key facts about your topic

* QObject-oriented programming is a programming paradigm based on the concept of "objects”,
which can contain data, in the form of fields, and code, in the form of procedures.

» A feature of objects is an object's procedures that can access and often modify the data fields of
the object with which they are associated.

 In OOP computer programs are designed by making them out of objects that interact with one
another.

« OOP languages are diverse, but the most popular ones are class-based, meaning that objects
are instances of classes, which also determine their types. Dart, Java, C++, and C# are OOP

languages.

TRENDS

Rankings are created by
weighting and combining
metrics from eight sources:

CareerBuilder, GitHub,
Google, Hacker News, the
IEEE, Reddit, Stack Overflow,
and Twitter.

Top Programming Languages 2024

Click a button to see a differently weighted ranking

Spectrum Trending

sQL
Python 0.9863
Java 0.8813
TypeScript 0.8017
SAS 0.5769
o
Scala
¢
Go
Solidity
Mathematica
ruy |
croovy [N
" -
switt [
avex [
Rust -
matlab [

Visual Basic

https://www.careerbuilder.com/
https://github.com/
https://www.google.com/
https://news.ycombinator.com/news
https://www.ieee.org/
https://www.reddit.com/
https://stackoverflow.com/
https://twitter.com/

Q 2
& ‘e
: 3
3 a3
- -<
“ ERBIL 2008

~N
OBJECTS

Name

OOP
LANGUAGES

METHODS
PROPERTIES
Send Email
Phone No.
JAVA, C++, C#, PYTHON, R, PHP,VISUAL
BASIC.NET, JAVASCRIPT, RUBY, PERL, , Call a number
SIMSCRIPT, OBJECT PASCAL, OBJECTIVE-C, Email 1D

DART, SWIFT, SCALA, KOTLIN, COMMON
LISP, MATLAB,AND SMALLTALK.

Various OOP features can be
implemented in Dart they are :

e Classes

Obijects FEATURES
Data Encapsulation

Inheritance
Polymorphism

|.CLASSES

= Class is a user defined data type and it
contains it's own data
members(Constructors , getters and
setters) and member functions.

= A class encapsulates data for the object.
A class in Dart can be decalred by using
the keyword class followed by the class
name and the body of the class should be
enclosed with a pair of curly braces {}

= One important thing to note is the rules
of identifers must be followed while
declaring a class name.

= A class contain constructors , fields ,
functions , setters and getters.

= Syntax for class declaration

class Human {

double height;
| int age = 0;

Property

Human({double startingHeight}) {
height = startingHeight;

void grow(int numberOfYears) {
age = age + numberOfYears;

Constructorn

2. OBJECTS

= Objects are concrete representations
of classes. Each object can hold specific

: . . Class P fi Behax
values for the attributes defined in its roperties ehaviors Objects
class. <+— O

= State: The current values of the Model Start Car car

object's properties (attributes). For Ignis,Maruti, 2023 Blue

example, an object of the class Car may - Drive

have attributes like color, model, and Car car2

speed. i . Punch,TATA,2024,White
= Behavior: The methods (functions) Car Color ¢

that define what an object can do. For
instance, a Car object might have
methods like accelerate() and ?
brake().

10
Obijects are fundamental to OOP, allowing developers to create modular, reusable, and maintainable code. They facilitate a

clear structure and organization by representing real-world entities and their interactions within a program.

3. DATA ENCAPSULATION

o . . . Encapsulation
Encapsulation in Flutter, as in other Object-Oriented |
Programming (OOP) languages, refers to the bundling ‘
of data (attributes) and methods (functions) that Data Methods
operate on that data within a class, while restricting S
direct access to some of the object's components.
This helps in protecting the integrity of the data and n Encapsulation Binds
promoting a modular design. B The Data And Methods.
Encapsulation in Dart happens at the library level
and not at the class level. The Principle of Encapsulation Helps To
Any identifer that starts with an underscore _is Protect The Data.

private to its library. Data Hiding.

3.DATA ENCAPSULATION

class Car { class CarInfo extends StatelessWidget { Encapsulation Example

/f Private attributes (encapsulation) verride
S5tring _color; @

String _model; Widget build(BuildContext context) {

int _speed; /7 Create an instance of the Car class

// Constructor Car myCar = Car('Red', 'Toyota');

Car{this._color, this._model) : _speed = @;
Sf Public method to accelerate the car /{ Access the puh'l.u: methods
void accelerate(int increment) { myCa F.EEEE-LEI'EItEl:EB:I;

_speed += increment;

Model: Toyota, Color: Red, Speed:
50 km/h

myCar.accelerate(30);
print({'The %_color %_model accelerates to $_speed km/h.');

}

return Text(
S/ Public method to get the car's details

String getDetails() {
return 'Model: $_model, Color: $_coler, Speed: $_speed km/h'; style: TextStyle(fontSize: 28],

1] :
// Public method to get the current speed he Red Toyota accelerates to 20 km/h.
int get speed == _speed; he Red Toyota accelerates to 50 km/h.

myCar.getDetails(),

4. INHERITANCE

Base Class 1

= |nheritance means the ability to create new classes from an existing one.

= The new created classes are called sub classes or child classes.

Y

= The class from which sub classes are derived is called the super class or a parent class. | - ¢lassB | | Base Class 2
A class is inherited from another class by using the extend keyword.

Dart supports the following types of Inheritance : Base Class

Y

= Single (one child class is inherited by one parent class only) classC | | Derived Class 2

¥

[classB | Derived Class Multilevel Inheritance

= Multi level (child class can inherit from another child class)

= Dart does not support Multiple Inheritance.

Single Inhetitance

= The super keyword is used to refer to immediate parent of a class.The keyword can be used to
refer to the super class version of a method or a variable. ;

INHERITANCE INACTION

& =
&
This principle leads us to an important concept in object-oriented programming that A o 5ooe o
allows a class to inherit properties and methods from another class and to extend u‘~— ”
them. So let's define: |
, , : T -
sub-class: the class that inherits properties and methods from another class, to fix N = ° " 5 =
ideas this is often called a child class; ’« W
| | |] “
super-class: a class that is extended and that provides the basis for other classes to il ko e o
which it provides basic properties and methods, is often also called the parent class. i - . g - i
~ ! ™
Based on these concepts we define the concept of an animal with classes and then we | " N 4 "

create a dog:

43 class VehicleInfo extends StatelessWidget {
46 @override

41 Widget build(BuildContext context) {

48 // Create an instance of the Car class

4. INHERITANCE (FLUTTER) ;; Car myCar = Car('Red’, 'Toyota'):

51 // Get car information
21 // Base class 32 §tring carInfo = myCar.getInfo();

22 class Vehicle { 53 String speedInfo = myCar.accelerate(26); // Accelerate the car by 28 kn/h
23 String color; o4

24 String model;

25 33 return Center(
26 Vehicle(this.color, this.model); 56 child: Column(

2!] mainAxisAlignment: MainAxisAlignment.cent

28 String getInfo() { Inheritance Exam
{ - - ple
29 return 'Vehicle Model: $model, Color: 55 children: |
30} 29 Text(
31) o carInfo,

32 ' -.
33 // Subclass style: TextStyle(fontSize:

34 class Car extends Vehicle {)') Vehicle Model: Toyota, Color: Red
35 int speed; SizedBox(height: 20),
36 TEH(he Red Toyota accelerates to 20

37 cCar(String color, String model) : speed = 8@, super(color, model); R

38

39 String accelerate(int increment) {

4@ speed += increment;).
41 return 'The Scolor Smodel accelerates to $speed km/h.';

42)

43 }

speedInfo,
style: TextStyle(fontSize:

Explanation

1. Vehicle Class (Base Class):
« (Contains two properties: color and model. 4
« Has a constructor to initialize these properties. :

* [ncludes a method getInfo() that returns a string with the vehicle's information. I N H E RITAN C E

2. Car Class (Subclass):

(CONT)

* |nherits from the Vehicle class using the extends kKeyword.
« Adds a property speed and initializes itto @.

« |ncludes a method acceleratel(int increment) that increases the speed and returns a
message.

3. Vehicleinfo Widget:
« (Creates aninstance of the Car class with specified color and model.
« (Calls the getInfol) method to get the vehicle's information.

« (Callsthe accelerate() method to simulate the car accelerating by 20 km/h.

« [Displays the information using Text widgets within a Column for vertical arrangement.

5.POLYMORPHISM

Polymorphism is achieved through inheritance and it represents the ability of an object to copy the
behavior of another object.

It means that one object can have multiple forms.

subclasses or child classes usually override instance methods, getters and setters. We can use

@override to indicate that we are overriding a member.

Dart doesn't allow overloading. To overcome this we can use argument definitions like optional and
positional.

5.POLYMORPHISM

class AnimalSounds extends StatelessWidget {
@override
Widget build{BuildContext context) {
// Create a list of animals
List<Animal> animals = [Dog(), Cat{)];

/f Base class
abstract class Animal {
String makeSound();

b

Polymorphism Example%

w o B WM

» // Subclass Dog
class Dog extends Animal {
Boverride
String makeSound() {
return Woof! ;

}

o

return Center(
child: Column{
mainAxisAlignment: MainAxisAlignment.center,
children: animals.map({(animal) {
return Text(
The animal makes: ${animal.makeSound()}’,
style: TextStyle(fontSize: 28),

&= WO

The animal makes: Woof!
The animal makes: Meow!

}

// Subclass Catl
> class Cat extends Animal {
@override
String makeSound() {
return 'Meow!';

}

)
}) .tolList(),

=] O N & L) =

o

hotn b bn bn bn bn bn bn bn N & b b b b b b
L

-
e

}

5.POLYMORPHISM

Explanation

1. Animal Class (Base Class):

« An abstract class Animal Is created with a method makeSound() . This method will be
implemented by subclasses.

2. Dog Class (Subclass):

« The Dog class extends the Animal class and overrides the makeSound({) method to
return "Woof!".

3. Cat Class (Subclass):

+« The Cat class also extends the Animal class and overrides the makeSound() method
to return "Meow!”,

4. AnimalSounds Widget:
« Alistof Animal objects (containing a Dog and a Cat) Is created.

* The map functionis used to call makeSound() on each animal in the list, demonstrating
polymorphism.

* The results are displayed using Text widgets withina Column .

Polymorphism Exampl&

The animal makes: Woof!
The animal makes: Meow!

DE'lLP {

ABSTRACT'ON |N ACT'ON // Abstract method to turn on the device

vuld turnOn();

Abstraction is the concept of hiding the complex implementation
details of a system and exposing only the necessary and relevant // Subclass Laptop
features to the user.) ~

class Laptop implements Device {
It allows developers to focus on interactions at a high level without
needing to understand the intricate workings of the components.

void turnOn() {
Abstract Classes:

print(
An abstract class serves as a blueprint for other classes. It cannot be }
instantiated on its own and often contains one or more abstract
methods that must be implemented by any subclass.

Abstract classes can also have concrete methods (methods with . .
implementation) and attributes. // Subclass Smartphone

. i rlass one ents Device
An abstract class can serve as an interface for other classes. This class Smartphone implemen Device {

means that any class that implements the abstract class must provide

implementations for all of its abstract methods. void turnon() {
Unlike some other programming languages, Dart does not have a print(
separate keyword for interfaces. Instead, all classes can act as }

interfaces, but abstract classes are a common way to define a

contract.

class DeviceInfo extends StatelessWidget {

ABSTRACTION INACTION
. Widget build(BuildContext context) {
XP anatIOn 4 Create instances of Laptop and Smartphone

Device myLaptop = Laptop();
1. Device Class (Abstract Class): Device mysmartphone = Smartphone { :I
The Device classis an abstract class with an abstract method turnOni() . This method

ff Call the turnOn method on each device
will be implemented by subclasses.

2. Laptop Class (Subclass):

* The Laptop class implements the Device interface and provides its version of the return Center(
| — Ll LE
turnOni)} method, which prints a message indicating that the laptop is now on. child: Colum r'|(
3. Smartphone Class (Subclass): mainAxisAlignment: MainAxisAlignment.center,
children: |
Text(
Abstraction Example S{I'ﬂ j:,-'_i_'i_[j:utrj:n[;l Lrunt '_|'|'|-!;'_f-,,-' |j:.|:;!} :
4. Devicelnfo Widget: style: TextStyle(fontSize: 28),
),
Text(
= The turnOn() method is called for each device to demonstrate polymorphism. Laptop: Laptop ${mySma rtphone.runtimeType}’,
Smartphone: Smartphone O e f B e 2
e: TextStyle(fontSize: 28),

* The Smartphone class also implements the Device interface and provides its version of
the turnOn() method.

* [nthe DeviceInfo widget, instances of Laptop and Smartphone are created.

* The output displays the types of devices on the screen.

UML DIAGRAM

UML stands

for Unified Modeling Language. It’s a
rich language to model software
solutions, application structures,
system behavior and business
processes. There are 14 UML
diagram types to help you model
these behaviors.

List of UML Diagram Types

So what are the different UML
diagram types?! There are two main
categories; structure

diagrams and behavioral
diagrams.

UML Diagram Types

Structural Diagrams

Composite Struture Deployment
Diagrams Diagrams

Package Profile Class
Diagrams Diagrams Diagrams

Component

Object Diagrams Diagrams

Behavioral Diagrams

State Machine Communication
Diagrams Diagrams

Usecase Activity Sequence
Diagrams Diagrams Diagrams

Interaction

Timing Diagrams . !
overview Diagrams

CLASS DIAGRAM

= Class diagram is the backbone of object-oriented modeling - it shows
how different entities (people, things, and data) relate to each other.

= |n other words, it shows the static structures of the system.

= A class diagram describes the attributes and operations of a class and
also the constraints imposed on the system.

= Class diagrams are widely used in the modeling of object-oriented
systems because they are the only UML diagrams that can be mapped
directly to object-oriented languages.

The purpose of the class diagram can be summarized as:

= Analysis and design of the static view of an application;

= To describe the responsibilities of a system;

= To provide a base for component and deployment diagrams; and,

= Forward and reverse engineering. 23

CLASS DIAGRAM
(CONT)

A class is depicted in the class
diagram as a rectangle with three
horizontal sections, as shown in
the figure below.

The upper section shows the
class’s name (Flight),

the middle section contains the
properties of the class,

and the lower section contains
the class’s operations (or
“methods”).

Class name

E

\'
Flight

—

flightNumber: string

‘\—

departureAirport: Airport <&

Class properties
-

/

arrivalAirport: Airport <&——
durationInMinutes: int é‘k"//
cancelFlight(): bool <&

Class methods

addFlightSchedule(): bool <€

getinstances(): list<Flightinstance>

«

24

UML conventions

<<interface>>
Name Interface: Classes implement interfaces, denoted by Generalization.
method1()
ClassName
C / SS property_name: type Class: Every class can have properties and methods.
Abstract classes are identified by their /talic names.
DIAGRAM

(C O N -I-,) A-mmmmmmmommees |> B Generalization: A implements B.

A [>>B Inheritance: A inherits from B. A "is-a" B.
A--mmmmmiieeeea B Use Interface: A uses interface B.

A B Association: A and B call each other.

A >» B Uni-directional Association: A can call B, but not vice versa.
A B Aggregation: A "has-an" instance of B. B can exist without A.

A @ B Composition: A "has-an" instance of B. B cannot exist without A~

WeeklySchedule Flight Airport

*

dayOfWeek: int \1‘ flightNumber: string name: string Abstract class (italic)
* *
departureTime : Time departureAirport: Airport —lands on/departs from—)» address: Address w

CustomSchedule / arrivalAirport: Airport code : string
customDate: date durationinMinutes: int Acoount

etFlights(): list<Flight>
getFlights) g id: string

departureTime : Time

code: string resetPassword(): bool

) 1
cancelFlight(): bool)
* password: string
ddFlightSchedule(): bool . .
Airline addrlg ule(): bo Uni-directional association status: AccountStatus
name: string getinstances(): list<Flightinstance> ‘ L ASS D I AG RA M

1
) - *4_\ Bi-directional association
getFlights(): list<Flight> assigned to . Generalization
Composition °

1
'q_j Flightinstance ¥] \[
Aggregation * i - list<Fli Decies
N —— getFlights(): list<Flightinstance>
‘ departureTime : Time | —assigned to)'\ExtendLD name: string
1

Aircraft __assignedto— | Pilot
o gate: string address: Address
name: string . * getFiights(): list<Flightinstance> ——Extends— > SA PLE C LASS
modal: string e Omak:sting
Admin] hone: strin
R ——— — , 57 phone: s DIAGRAM FOR FLIGHT
addAircraft(): bool Extends
]]) updateStatus(): void
e RESERVATION SYSTEM
blockUser(): bool
Multiplicity ageinel
Dependency
FlightReservation Payment
reservationNumber: string paymentiD: int
flight: Flightinstance frommmmmmmmmmmo=-= 2 amount: double

seatMap: map<Passenger, FlightSeat> status: PaymentStatus

status: ReservationStatus

makeTransaction(): bool

getPassengers(): list<Passenger>

Patient

Hospital Doctor Prescription Cashier Bill
-Name : string -Name : string -Serial Number : int -Name : string -Amount : int
-Address : string -Specialization : -Current patient's data : Patient's data -NIC Number : int 4L__ +Enter total
-Phone Number : int tri -Empl ID : stril
o e f'Errl:lfloyee 1D : string +Enter prescription(); _L -ngiﬁyee e amountf);

+Enter data(); -Rank : string : +View prescription(); . +Enter paid
+View data(); o +Edit prescription(); +Enter infol); amount();

-Salary : int .

~ +View infol);

+Enter doctor's +Generate bill(Bill b

info();)

+View doctor's info();

+give prescription(); D I ls G RA I\/I

[J
Medical Report
[J
Receptionist Receipt - Report Number: int
N N N - Current patient: Patient's
-Employee ID : string -Reciept Number : int data
-Name : string -Aount Of Payment : int
+ Enter medical report (

+Enter receptionist info(); +Enter receipt info(); 1 Patient's data Current patient

+Viewreceptionist info();

+View receipt info();

Patient Data

-Patient's Name :
string

-NIC Number : int
-Sickness : string
-Phone Number : dint

)
+ View medical report (
Patient's data Current patient
)

+Enter patient's data();
+View patient's();
+Edit patient's data();

—

Outpatient

Inpatient

Test

-Blood group : string
-Current patient : Patient's data

MANAGEMENT
SYSTEM

+Enter test result(Patient's data Current patient);
+View test result(Patient's data Current patient);

SUMMARY

© Introduction to Moblle Apnatlons WHY [USE

In this lecture notes we learned about many important aspects: [TG apeallon: 1)
[T ﬁ 8. Using FLUTTER, = C
A (©) ETIER Lo D a7 W
- Key facts about OOP L)) FEA FLuTree o lic 4G (o) -w]

.;@/ma , > S

_=1 == | WIGDETS WIGBETS
) !'ISMUWER7 —

= Trending Programming Languages 2024 and our Dart ©

DA \viconTs
e INFlUﬂUO

= OOP languages and how popular they are! S o - .A
- o a:
. | o ® ?urrsn D'NG YOUR APP ¢
= OOP Features in Flutter *ﬂ D o g
", ‘.' 1”7

" ci=m»

= UML Diagram

Finally, OOP features in Dart with some examples

Please note that you if you needed to remember anything about Dart, you can go back to your Programming 2 or OOP lecture notes or use
the ChatGPT for more details.

28

	Slide 1: Mobile applications (IT 319)
	Slide 2: Contents
	Slide 3: CLOs
	Slide 4: Content
	Slide 5: Key facts about your topic
	Slide 6: Trends
	Slide 7: OOP languages
	Slide 8: Features
	Slide 9: 1.Classes
	Slide 10: 2. Objects
	Slide 11: 3. Data Encapsulation
	Slide 12: 3. Data Encapsulation
	Slide 13: 4. Inheritance
	Slide 14: Inheritance in Action
	Slide 15: 4. Inheritance (Flutter)
	Slide 16: 4. Inheritance (Cont.)
	Slide 17: 5. Polymorphism
	Slide 18: 5. Polymorphism
	Slide 19: 5. Polymorphism
	Slide 20: Abstraction in Action
	Slide 21: Abstraction in Action
	Slide 22: UML Diagram
	Slide 23: Class Diagram
	Slide 24: Class Diagram (cont.)
	Slide 25: Class Diagram (cont.)
	Slide 26: Class Diagram (cont.) Sample class diagram for flight reservation system
	Slide 27: Class Diagram Example: Hospital management System
	Slide 28: Summary

