TION,
Nt g,
A ~/
s ‘e
= K

“ERBIL 2008

\/

Software Engineering

IT Department

Lecture 1: Course Overview & Introduction to Software Engineering

Halal Abdulrahman Ahmed

Agenda

* Course Overview & Objectives

* Assessment & Grading Policy

* Presentation Guidelines & Topics
* Submission Policy

* Classroom Rules & Expectations

* Introduction to Software Engineering

Course Overview

* Software Engineering 1s about designing, building, testing, and maintaining

software in an organized way.
* It helps create reliable, secure, and high-quality systems that meet user needs.

* In this course, you will learn how software is developed from planning to delivery and

how teams work together to build real-world systems like university portals or hospital

apps.

Course Objectives

By the end of this course, you will be able to:

*Understand what Software Engineering 1s and why it 1s important.

*Describe the Software Development Life Cycle (SDLC) and its main phases.

*Explain and compare different software process models (Waterfall, Incremental, Spiral, Agile).
*Understand the roles of software engineers, developers, and testers in a project.

*Recognize the importance of project planning, documentation, and quality assurance.
*Relate Software Engineering concepts to real-world systems such as hospital, education, or e-

commerce software.

Course Materials

SO'&.WG re‘ Essenti.éls
Engineering et . of Software
5 Basic Principles and §©ﬂ EN g Ineer| Ng

Best Practices) =
Frank Tsui
> RAVISETHI itk
. 2 ‘

NINTH EDITION

Software
Engineering

A PRACTITIONER S APPROACH - e

BRUGER MAXIM

ner VA \\s
,' “R§s

Assessment and Grading

Assessment Type Weight Quantity
Midterm Exam 20% 1

Quiz 10% 23
Presentation 10% 1

Mini Project 20% 4-5

Final Exam 40% 1

Exam Format (Midterm & Final)

* Covers all theoretical materials/topics they are paper based exams.

Exam questions may include:

e Short answers

Definitions & Explanations

Scenario-based questions

Multiple-choice questions

True or False

Problem-solving tasks

Quiz Format

* Short and simple
* 10—15 minutes only
* Small tasks

* Checks weekly understanding

Mini Project

* Work 1n groups of 3—4
* Every couple of weeks we will have a mini1 project.

* Submit it by the deadline. No extensions allowed.

Presentation Guidelines 5

* Form groups of 6 students.

Choose ONE topic within your group (first come, first served). ‘ ‘ ‘ ‘ ‘ ‘

Inform the Class Representative:

* Class Rep writes all groups, all member names, and the chosen topic, and sends full list

in one single email by 19 October 2025.

Time: 20 minutes per group — 15 min presentation + 5 min Q&A.

Submit slides via Google Classroom only.

Deadline: 27 November 2025.

Everyone presents.

Submission Policy

* Submit via Google Classroom only.

* No late submissions, and no extensions allowed.

* Not more than 25% Al-generated content is allowed.

* Marks deducted for plagiarism.

Classroom Rules

*Arrive on Time: Students arriving more than 5 minutes late will not be allowed to
enter and will be marked absent.

*Attendance Matters: Absences are recorded and may affect grades.

*Respectful Environment: Maintain silence, avoid distractions, and respect classmates
and the instructor.

*Devices Policy: Phones and laptops should only be used for class activities.
*Assignments & Exams: Must be submitted/completed on time. No late submissions.
*Academic Integrity: Cheating or plagiarism is strictly prohibited.

*Privacy Rule: Recording videos or taking photos without permission is not allowed.

Contact Information

Email: halal.abdulrahman@tiu.edu.iq

Office Hours: Main Building — Room 321

What is Software?

* Software 1s a collection of programs, data, and instructions that tell the computer how to work.

* It allows the hardware to perform useful tasks. Without software, a computer is just a machine

with no purpose.
Types of software:
» System Software (Windows, macOS)
» Application Software (Word, Excel)

« Utility Software (Antivirus, Backup Tools)

What is Software Engineering?

* Software Engineering is the systematic and organized process of designing, developing, testing,

and maintaining software systems.

* It applies engineering principles to ensure software is reliable, efficient, secure, and

maintainable.

* In simple words, 1t means creating software carefully and professionally, not just coding

randomly.

 Example: A software engineer plans, designs, tests, and maintains software just like a civil

engineer plans, builds, and maintains a bridge. {f -

Why Do We Need Software Engineering?

* In the early days, programmers wrote code without planning. Projects often failed or were full of

errors. This was known as the 'Software Crisis.'

Software Engineering solves this by introducing: O m
 Planning and design
* Quality control o

* Testing and teamwork

Now, large systems like hospitals, banks, and universities are built reliably and on time.

Importance of Software Engineering (\

Software Engineering 1s important because it: \O)

* Reduces time and cost.
IIMPO RTﬂNTI
* Produces high-quality, reliable systems.

* Improves teamwork and documentation.
* Helps manage complex projects.

 Ensures customer satisfaction.

Characteristics of Good Software

Good software should be:

Correct — performs all tasks accurately

Reliable — works without frequent crashes

Efficient — uses system resources well

Maintainable — easy to update and fix

Secure — protects data

User-friendly — simple and easy to use

Portable — works on different systems

Software Development Life Cycle (SDLC)

SDLC stands for Software Development Life Cycle.

It has six main phases:

* Requirement Analysis (Planning and Analyzing): find out what users need.

. . . 6.
Design: decide how the system will work. Maintenance

Implementation: write the code. THE

SOFTWARE

. DEVELOPMENT
Testing: check for errors. LIFE CYCLE

Deployment: deliver the system.

3

Implementation

Maintenance: fix bugs and add new features.

Phase 1 — Requirement Analysis

The team communicates with clients to understand their needs.

Define the project goals, scope, and timeline.

Estimate cost, schedule, and resources.

Decide what problem needs solving and how the project will proceed. Example: Planning how the new

university system will work, who will use it, and when it should be ready.

All requirements are written in a document called SRS (Software Requirement Specification).

Example: University registration system — login, course selection, grades view.

Phase 2 — System Design

* In this phase, engineers plan how the system will work.

* They create diagrams, database designs, and user interfaces.

Example: Designing the interface and database for student data.

7t
OO

Phase 3 — Implementation (Coding)

* Developers write the code according to the design.

* They follow coding standards to ensure quality and teamwork.

Example: Building the login and dashboard modules.

Phase 4 — Testing

* Testing ensures the system works properly and meets requirements.

Types of testing:

*Unit Testing (by Developers) : Testing small parts of the program.
This 1s the first step of testing. Each unit a small piece of code such as a function, method, or class

1s tested separately by the developer. The goal 1s to make sure each part works correctly before

combining them.

Example: Test the ‘Add Patient’ form in the hospital system — does it save the patient’s details

properly?”

Phase 4 — Testing

Integration Testing (by Developers or Testers): Testing how modules work together.
Once all small parts are tested, we connect them and test how they work together. This

makes sure data flows correctly between modules.

Example: After testing ‘Add Patient’ and ‘Search Patient’ separately, we check 1f a newly

added patient can be found through the search module.

Phase 4 — Testing

*System Testing (by QA Team or Testers): Testing the whole system.

Now we test the entire software system as a whole. This includes checking all modules, user
interfaces, and system performance. It’s done by a Quality Assurance (QA) team, not by

developers.

Example: Test login, booking, billing, and reports all working together, as a real user would.

Phase 4 — Testing

*User Acceptance Testing (UAT) (by End Users): Final testing by real users
This is the final test, done by the real users (like doctors, students, or customers) to see if the system

meets their needs and is easy to use. If the users approve, we can officially release the software.

Example: Doctors try the hospital system to check if it’s simple and accurate for scheduling

patients.”

Phase 5 — Deployment

Deployment 1s the phase where the software 1s installed, delivered, and made available for real

use.

e The goal 1s to move the completed system from the testing environment to the live (production)
environment. Example: Installing the university system on real servers for students and staff to
access.

* Sometimes a pilot version (trial release) 1s launched first for a small group of users before the
full rollout.

e Deployment includes installation, configuration, data migration, and user training. @‘

 After deployment, users start using the system officially.

\— =/

Phase 6 — Maintenance

» After deployment, software must be updated and fixed regularly.

* Example: Adding mobile support or new features later.

	Slide 1: Software Engineering
	Slide 2: Agenda
	Slide 3: Course Overview
	Slide 4: Course Objectives
	Slide 5: Course Materials
	Slide 6: Assessment and Grading
	Slide 7: Exam Format (Midterm & Final)
	Slide 8: Quiz Format
	Slide 9: Mini Project
	Slide 10: Presentation Guidelines
	Slide 11: Submission Policy
	Slide 12: Classroom Rules
	Slide 13: Contact Information
	Slide 14: What is Software?
	Slide 15: What is Software Engineering?
	Slide 16: Why Do We Need Software Engineering?
	Slide 17: Importance of Software Engineering
	Slide 18: Characteristics of Good Software
	Slide 19: Software Development Life Cycle (SDLC)
	Slide 20: Phase 1 – Requirement Analysis
	Slide 21: Phase 2 – System Design
	Slide 22: Phase 3 – Implementation (Coding)
	Slide 23: Phase 4 – Testing
	Slide 24: Phase 4 – Testing
	Slide 25: Phase 4 – Testing
	Slide 26: Phase 4 – Testing
	Slide 27: Phase 5 – Deployment
	Slide 28: Phase 6 – Maintenance
	Slide 29

