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Common Challenges
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Ambiguous prompts lead to incorrect or 
incomplete code.

AI may generate syntactically correct but 
logically wrong code.

Complex tasks require multi-step guidance.

Debugging AI-generated code still requires 
developer expertise.



Types of prompts for code 
generation

1. Simple Prompt

Short description of a task.

Example:     “Generate a Python function to calculate factorial.”

2. Complex Prompt

Detailed specification including constraints, inputs, and expected outputs.

Example:     “Write a Dart function that sums a list but only counts numbers > 10.”

3. Multi-Stage Prompt

Break large tasks into sequential steps.

Example:
“Step 1: Generate a data model.
Step 2: Generate a REST API client.
Step 3: Generate Flutter UI for displaying the data.”

4. Interactive Prompt

Iterative refinement through follow-up instructions.
User: “Add validation.” AI: Updates code accordingly.
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Prompt engineering techniques for 
code generation

1. Use Examples & Templates

• Provide patterns or code skeletons to guide the model.

2. Use Natural Language Descriptions

• Clear, direct instructions increase accuracy.

3. Use Structured Prompts

• Include: context → instruction → constraints → format → examples.

4. Use Specialized Code Tools

• Copilot, CodeWhisperer, Tabnine, etc., optimize the model’s understanding of 
syntax and libraries.
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Applications 
Of Prompt 

Engineering 
For Code 

Generation

There are four main applications of prompt engineering for 
code generation:

1. Automated Code Generation

• Generate functions, classes, UI components, API 
services.

2. Code Repair & Refactoring

• Optimize for readability, performance, or best 
practices.

3. Code Synthesis

• Combine multiple snippets to produce complex 
code.

4. Code Explanation & Documentation

• Generate API docs or explain legacy code line by 
line.
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AI Code 
Assistants: 

Safety & 
Limitations

1. Never paste sensitive information

• Do not enter passwords, API keys, database credentials, student 
data, or internal project files.

• AI tools store prompts for model improvement, so sensitive data 
may become exposed.

2. AI-generated code must be reviewed

• Treat AI output as a draft, not final code.

• Always check logic, performance, security, and compatibility with 
your project.

• AI can produce code that compiles but contains hidden bugs.

3. AI may hallucinate functions, classes, or libraries

• Sometimes the model invents:
• Non-existent methods
• Fake APIs
• Wrong library names
• Unsupported Flutter/Dart syntax

• Students should verify output against official documentation.

4. Human responsibility remains essential

• AI helps accelerate coding, but the developer is responsible for 
correctness, security, and maintainability.

• Use AI to support thinking, not replace it.
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5 Best AI Code 
Generators 
(October 2026)

AI code generators 
streamline coding, 
automate routine tasks, 
and suggest code 
snippets :)
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Ai Lab Tools & 
Activities for This 
Week

1. AI Coding Assistants

• Cursor AI
Hands-on testing of an AI-driven coding workspace with agentic 
features.

• GitHub Copilot
Inline code suggestions, refactoring, and debugging support inside the 
IDE.

2. Google AI for Code Generation

• Gemini via DartPad
You have already tested Gemini’s code-generation capabilities using 
DartPad
as part of your Lab Task for this course (Dart/Flutter focus).

3. Google AI Studio

• Building prompts, testing models, and generating code in a controlled 
environment.

• Exploring model parameters and evaluating output quality.

4. Google AI Labs

• Experimenting with cutting-edge AI features and experimental tools.

• Understanding how AI agents perform planning and multi-step code 
generation.
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Demos ☺
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Conclusion
• Clear prompts produce cleaner, more accurate code.

• Use structured prompts for complex tasks.

• AI helps generate code, but human review is essential.

• Multiple tools exist — choose based on context and 
constraints.

• Prompt engineering is now a core skill for modern 
developers.
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