
AI PE Course (2025- 2026 Fall Term)
Week6:AI Prompt Engineering for

Code Generation

3d Grade IT Students

Lecturer: Mohamamd Salim Al-Othman

MS TEAM Classroom code: ysliir3

1

Contents

• Introduction

• Types of Prompts

• Techniques

• Applications

• Safety and Limitaions

• Tools (5 AI Code Generators)

• Mini Lab + Exercises

• Summary

2

Common Challenges

3

Ambiguous prompts lead to incorrect or
incomplete code.

AI may generate syntactically correct but
logically wrong code.

Complex tasks require multi-step guidance.

Debugging AI-generated code still requires
developer expertise.

Types of prompts for code
generation

1. Simple Prompt

Short description of a task.

Example: “Generate a Python function to calculate factorial.”

2. Complex Prompt

Detailed specification including constraints, inputs, and expected outputs.

Example: “Write a Dart function that sums a list but only counts numbers > 10.”

3. Multi-Stage Prompt

Break large tasks into sequential steps.

Example:
“Step 1: Generate a data model.
Step 2: Generate a REST API client.
Step 3: Generate Flutter UI for displaying the data.”

4. Interactive Prompt

Iterative refinement through follow-up instructions.
User: “Add validation.” AI: Updates code accordingly.

4

Prompt engineering techniques for
code generation

1. Use Examples & Templates

• Provide patterns or code skeletons to guide the model.

2. Use Natural Language Descriptions

• Clear, direct instructions increase accuracy.

3. Use Structured Prompts

• Include: context → instruction → constraints → format → examples.

4. Use Specialized Code Tools

• Copilot, CodeWhisperer, Tabnine, etc., optimize the model’s understanding of
syntax and libraries.

5

Applications
Of Prompt

Engineering
For Code

Generation

There are four main applications of prompt engineering for
code generation:

1. Automated Code Generation

• Generate functions, classes, UI components, API
services.

2. Code Repair & Refactoring

• Optimize for readability, performance, or best
practices.

3. Code Synthesis

• Combine multiple snippets to produce complex
code.

4. Code Explanation & Documentation

• Generate API docs or explain legacy code line by
line.

6

AI Code
Assistants:

Safety &
Limitations

1. Never paste sensitive information

• Do not enter passwords, API keys, database credentials, student
data, or internal project files.

• AI tools store prompts for model improvement, so sensitive data
may become exposed.

2. AI-generated code must be reviewed

• Treat AI output as a draft, not final code.

• Always check logic, performance, security, and compatibility with
your project.

• AI can produce code that compiles but contains hidden bugs.

3. AI may hallucinate functions, classes, or libraries

• Sometimes the model invents:
• Non-existent methods
• Fake APIs
• Wrong library names
• Unsupported Flutter/Dart syntax

• Students should verify output against official documentation.

4. Human responsibility remains essential

• AI helps accelerate coding, but the developer is responsible for
correctness, security, and maintainability.

• Use AI to support thinking, not replace it.

7

5 Best AI Code
Generators
(October 2026)

AI code generators
streamline coding,
automate routine tasks,
and suggest code
snippets :)

8

9

10

Ai Lab Tools &
Activities for This
Week

1. AI Coding Assistants

• Cursor AI
Hands-on testing of an AI-driven coding workspace with agentic
features.

• GitHub Copilot
Inline code suggestions, refactoring, and debugging support inside the
IDE.

2. Google AI for Code Generation

• Gemini via DartPad
You have already tested Gemini’s code-generation capabilities using
DartPad
as part of your Lab Task for this course (Dart/Flutter focus).

3. Google AI Studio

• Building prompts, testing models, and generating code in a controlled
environment.

• Exploring model parameters and evaluating output quality.

4. Google AI Labs

• Experimenting with cutting-edge AI features and experimental tools.

• Understanding how AI agents perform planning and multi-step code
generation.

11

Demos ☺

12

Conclusion
• Clear prompts produce cleaner, more accurate code.

• Use structured prompts for complex tasks.

• AI helps generate code, but human review is essential.

• Multiple tools exist — choose based on context and
constraints.

• Prompt engineering is now a core skill for modern
developers.

13

References

• [1] V. Corso, L. Mariani, D. Micciucci, and O. Riganelli,
“Generating Java Methods: An Empirical Assessment of Four AI-
Based Code Assistants,” arXiv preprint arXiv:2402.08431, 2024.

• [2] J. H. Klemmer et al., “Using AI Assistants in Software
Development: A Qualitative Study on Security Practices and
Concerns,” arXiv preprint arXiv:2405.06371, 2024.

• [3] J. Li et al., “An Exploratory Study on Fine-Tuning Large
Language Models for Secure Code Generation,” arXiv preprint
arXiv:2408.09078, 2024.

• [4] S. Torka, “Optimizing AI-Assisted Code Generation,” arXiv
preprint arXiv:2412.10953, 2024.

• [5] A. Sergeyuk, “Using AI-based Coding Assistants in Practice,”
Information and Software Technology, vol. 171, 2025, doi:
10.1016/j.infsof.2024.107347.

14

	Slide 1: AI PE Course (2025- 2026 Fall Term) Week6:AI Prompt Engineering for Code Generation
	Slide 2: Contents
	Slide 3: Common Challenges
	Slide 4: Types of prompts for code generation
	Slide 5: Prompt engineering techniques for code generation
	Slide 6: Applications Of Prompt Engineering For Code Generation
	Slide 7: AI Code Assistants: Safety & Limitations
	Slide 8: 5 Best AI Code Generators (October 2026)
	Slide 9
	Slide 10
	Slide 11: Ai Lab Tools & Activities for This Week
	Slide 12: Demos 
	Slide 13
	Slide 14: References

