

CHAPTER -4-

Measure of Central Tendency

(Measure of Location)

Content

- ▶ Measure of central tendency
 - ▶ Mean
 - ▶ Median
 - ▶ Mode
- ▶ Calculation of the measures using raw (ungrouped) and grouped data
- ▶ Median like measures- Quartiles, Deciles, Percentiles

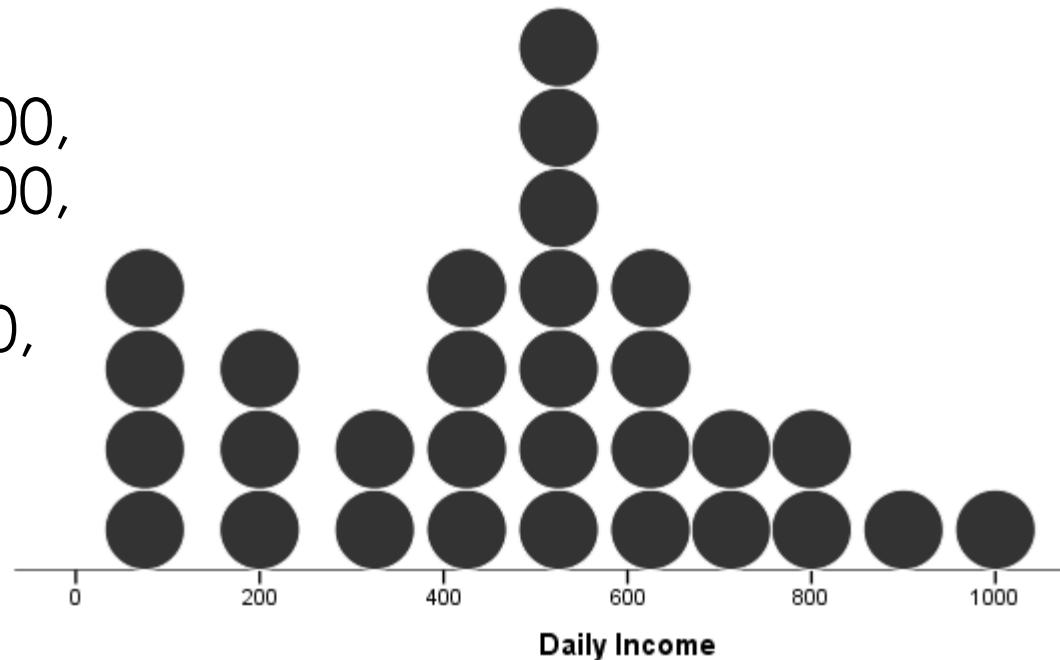
Measures of central tendency

- ▶ In every data set, the data have the tendency to occur mostly in a central location.
- ▶ The measures used to find and describe those locations, are collectively known as measures of central tendency

Measures of central tendency

Daily income of 30 respondents-

50, 100, 500, 1000, 400, 100, 200,
500, 200, 500, 800, 900, 700, 500,
600, 450, 600, 500, 450, 400,
350, 650, 300, 200, 800, 700, 50,
550, 600, 500



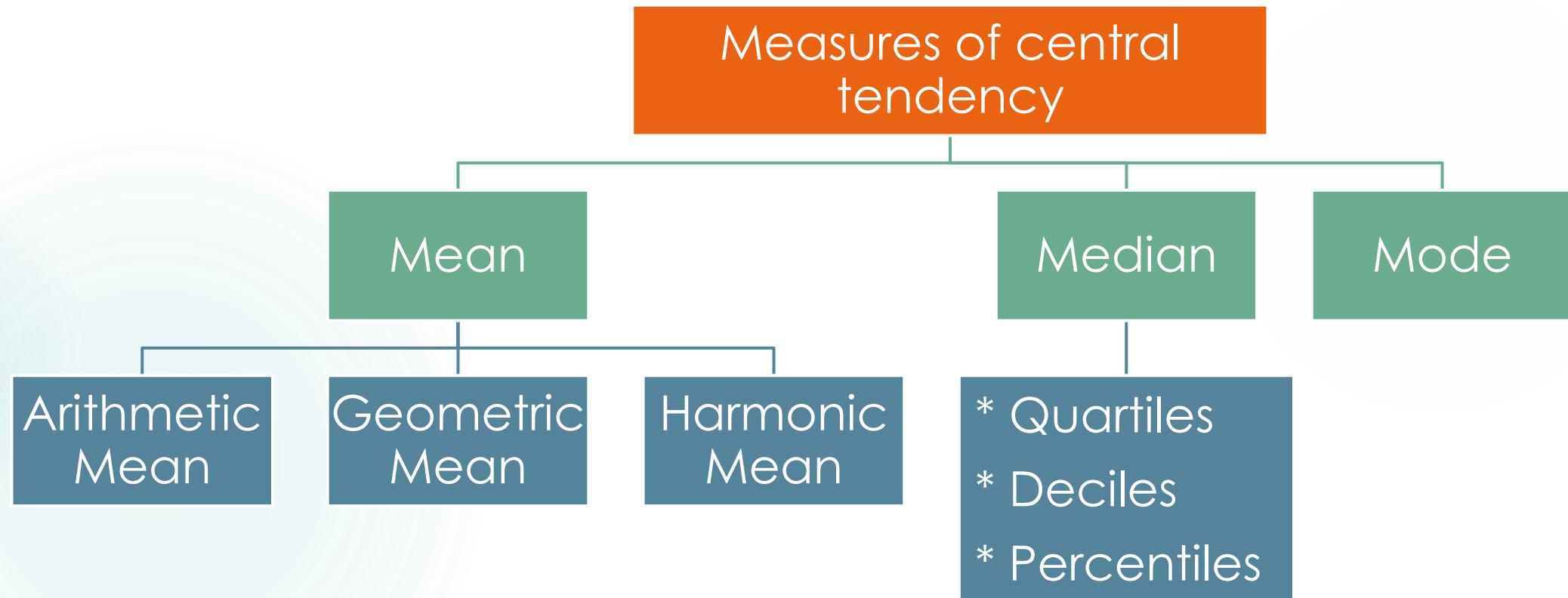
Measures of central tendency

5

- ▶ Measure of central tendency provide a very convenient way of describing a set of scores with a **single number** that describe the **performance of the group**
- ▶ It is also defined as a single value that is used to describe the **center of the data**.

Measures of central tendency

6



Mean (Arithmetic Mean)

It is simply the sum of the **numbers divided by the number of numbers** in a set of data. This is also known as average.

For example, consider the values-

5, 3, 9, 2, 7, 5, 8

Mean (Arithmetic Mean)

It is simply the sum of the **numbers divided by the number of numbers** in a set of data. This is also known as average.

For example, consider the values-

5, 3, 9, 2, 7, 5, 8

$$\begin{aligned} \text{Mean} &= \frac{5 + 3 + 9 + 2 + 7 + 5 + 8}{7} \\ &= \frac{39}{7} = 5.57 \text{ unit} \end{aligned}$$

Mean (Arithmetic Mean)

Formulas:

For raw or ungrouped data-

For Population: let, X_1, X_2, \dots, X_N are values of a variable from a population of size N . Then,

Population mean, μ =

$$= \frac{X_1 + X_2 + \dots + X_N}{N} = \frac{\sum_{i=1}^N X_i}{N}$$

(Parameter)

For Sample: let, x_1, x_2, \dots, x_n are values of a variable from a sample of size n . Then,

Sample mean, \bar{x} =

$$= \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{\sum_{i=1}^n x_i}{n}$$

(Statistic)

Note:

- Mean cannot be calculated for Nominal & Ordinal level of data
- Mean is easily affected by extreme values
- $\sum_i(x_i - \bar{x}) = 0$

Median is the number present in the **middle** when the numbers in a set of data are **arranged in ascending or descending order**. If the number of numbers in a data set is **even**, then the median is the **mean of the two middle numbers**.

For example, consider the values-

5, 3, 9, 2, 7, 5, 8

Median

12

Organizing in **ascending** order,

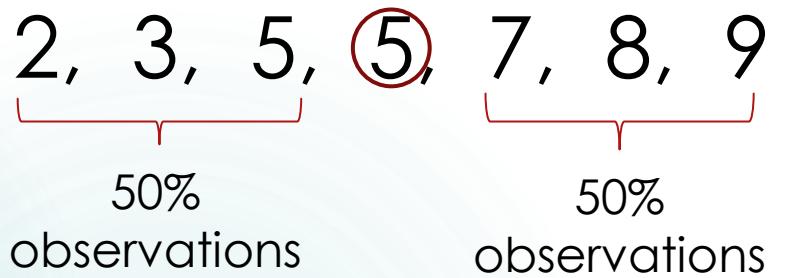
2, 3, 5, 5, 7, 8, 9

Median

13

Organizing in **ascending** order,

2, 3, 5, **5**, 7, 8, 9



50%
observations

50%
observations

Here, $n=7$ (an odd number)

Median = 5

Median

14

Consider – 3, 5, 5 , 7, 8, 9

Median

15

Consider – 3, 5, 5 , 7, 8, 9

Organizing in **ascending** order,

3, 5, 5, | 7, 8, 9

50% 50%
observations observations

Median

16

Consider – 3, 5, 5, 7, 8, 9

Here, n= 6 (an even number)

Organizing in **ascending** order,

3, 5, 5, | 7, 8, 9

 50% observations 50% observations

$$\begin{aligned} \text{Median} &= \frac{3\text{rd value} + 4\text{th value}}{2} \\ &= \frac{5 + 7}{2} = \frac{12}{2} = 6 \end{aligned}$$

Formulas:

For raw or ungrouped data- (Sample)

For Odd n

$$\text{Median} = \left(\frac{n+1}{2} \right)^{\text{th}} \text{ value}$$

For Even n

$$\text{Median} = \frac{1}{2} \left[\left(\frac{n}{2} \right)^{\text{th}} \text{ value} + \left(\frac{n}{2} + 1 \right)^{\text{th}} \text{ value} \right]$$

Note:

- To find median, data has to be at least in ordinal level of measurement
- Median is not affected by extreme values

Mode is the value that occurs most frequently in a set of data

Notes: Mode can be computed for all levels of data.

For example, consider the values-

5, 3, 9, 2, 7, 5, 8

consider the values-

5, 3, 9, 2, 7, 5, 8

consider the values-

5, 3, 9, 2, 7, 5, 8

Value **5** occurred
maximum 2 times

Mode = 5

Formulas:

For raw or ungrouped data-

Find the value occurred most of the times in the data

Example (raw data)

Weekly income of 6 respondents (in taka)-

2500, 3900, 3500, 5000, 4000, 3500

Find Mean, Median and Mode. Interpret the results.

Class task (raw data)

Weekly income of 6 respondents (in taka)-

2500, 3900, 3500, 5000, 4000, 3500

$$\text{Mean, } \bar{x} = \frac{2500 + 3900 + 3500 + 5000 + 4000 + 3500}{6} = \frac{22400}{6}$$
$$= 3733.33 \approx 3734 \text{ taka}$$

Interpretation: Average weekly income of the respondents is 3734 taka

Example (raw data)

Weekly income of 6 respondents (in taka)-

2500, 3900, 3500, 5000, 4000, 3500

Organizing the values in ascending order-

2500, 3500, 3500, 3900, 4000, 5000

Example (raw data)

$$\begin{aligned}\textbf{Median} &= \frac{1}{2} \left[\left(\frac{n}{2} \right)^{\text{th}} \text{value} + \left(\frac{n}{2} + 1 \right)^{\text{th}} \text{value} \right] \\ &= \frac{1}{2} [3^{\text{rd}} \text{value} + 4^{\text{th}} \text{value}] = \frac{1}{2} [3500 + 3900] = 3700 \text{ taka}\end{aligned}$$

Interpretation: 50% of the respondents have weekly income less than or equal to 3700 taka, and 50% of the respondents have weekly income higher than or equal to 3700 taka.

Example (raw data)

Weekly income of 6 respondents (in taka)-

2500, 3900, 3500, 5000, 4000, 3500

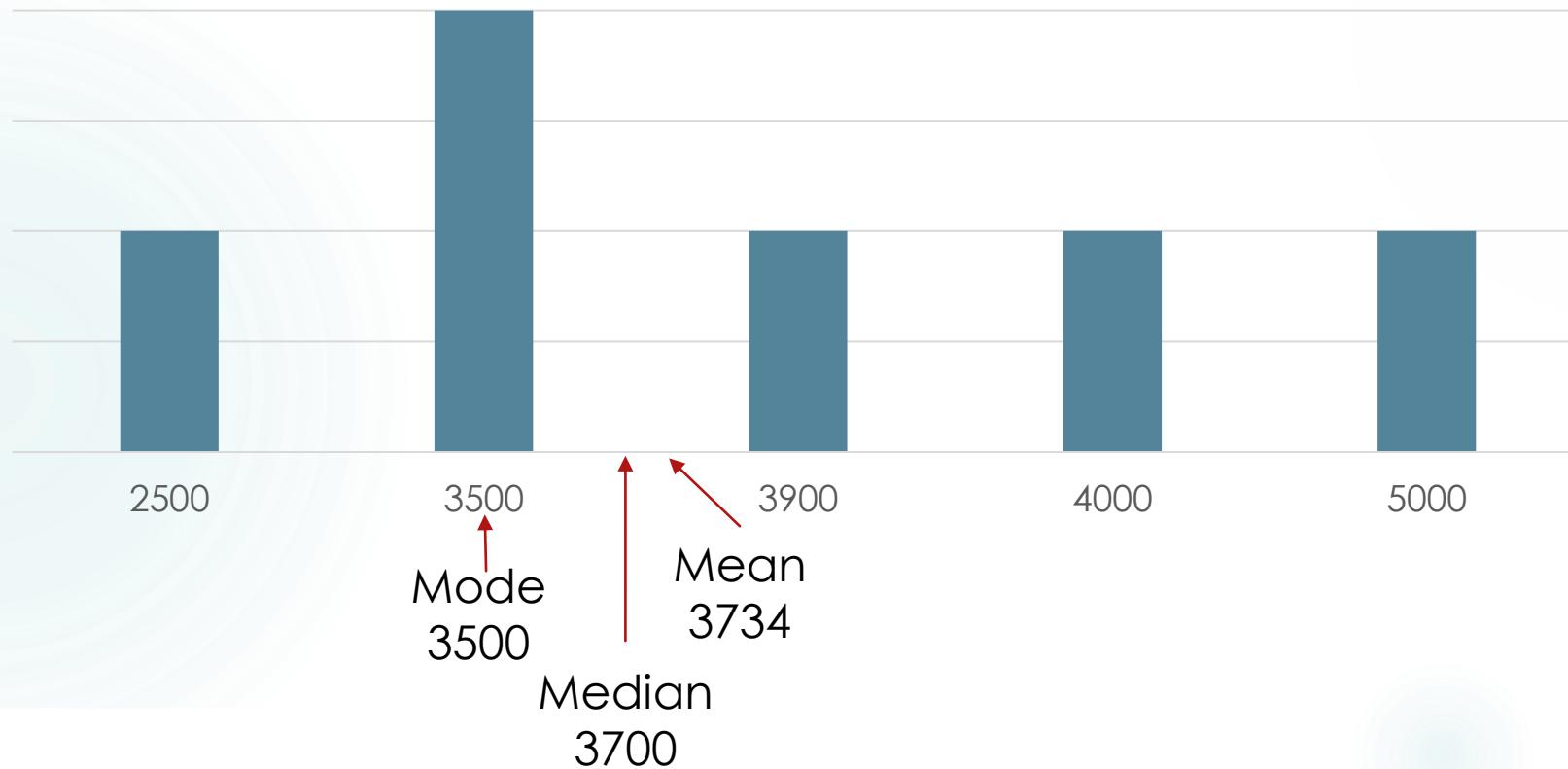
Value 3500 occurs highest 2 times in the data.

So, **Mode** = 3500

Interpretation: In the data, weekly income 3500 taka is occurred highest number of times.

Example (raw data)

In graphs-



Formulas:

For grouped data- (Population)

x_i	f_i
x_1	f_1
x_2	f_2
...	...
x_K	f_K

let, X_1, X_2, \dots, X_K are values of a variable from a population of size N and they occurred f_1, f_2, \dots, f_K times respectively. Then,

$$\text{Population mean, } \mu = \frac{\sum_{i=1}^K f_i X_i}{N}$$

Formulas:

For grouped data- (Sample)

x_i	f_i
x_1	f_1
x_2	f_2
...	...
x_k	f_k

let, x_1, x_2, \dots, x_k are values of a variable from a sample of size n and they occurred f_1, f_2, \dots, f_k times respectively. Then,

$$\text{Sample mean, } \bar{x} = \frac{\sum_{i=1}^k f_i x_i}{n}$$

Median

Formulas:

For grouped data- (Sample)

$$\text{Median} = L_m + \frac{\frac{n}{2} - F}{f_m} * c$$

Where,

L_m = Lower class limit of the median class

n = Total frequency

F = Cumulative frequency of the pre-median class

f_m = frequency of the median class

c = class interval

Formulas:

For grouped data-

$$Mode = L_o + \frac{\Delta_1}{\Delta_1 + \Delta_2} * c$$

Where,

L_o = Lower class limit of the modal class

Δ_1 = Excess of modal frequency over frequency of the next lower class (Pre-modal class) = difference between the frequencies of the modal class and pre-modal class.

Δ_2 = Excess of modal frequency over frequency of the next higher class (Post-modal class) = difference between the frequencies of the modal class and post-modal class.

c = class interval

Example (grouped data)

Monthly income ('000 tk)	No. of respondents
5-30	7
30-55	10
55-80	6
80-105	4
105-130	3

Find Mean, Median and Mode. Interpret the results.

Example (grouped data)

Monthly income (‘000 tk)	No. of respondents (f_i)	Class Midpoint (x_i)	$f_i x_i$
5-30	7	17.5	122.5
30-55	10	42.5	425
55-80	6	67.5	405
80-105	4	92.5	370
105-130	3	117.5	352.5
Total	30		1675

$$Mean, \bar{x} = \frac{\sum_{i=1}^k f_i x_i}{n} = \frac{1675}{30} = 55.83 \text{ (thousand taka)}$$

Example (grouped data)

Monthly income ('000 tk)	No. of respondents (f_i)	Cumulative frequency
5-30	7	7
30-55	10	17
55-80	6	23
80-105	4	27
105-130	3	30
Total	30	

50% of the respondents have monthly family income less than or equal to 50,000 taka and 50% of the respondents have monthly family income higher than or equal to 50,000 taka

$$\text{Median} = L_m + \frac{\frac{n}{2} - F}{f_m} * c = 30 + \frac{15 - 7}{10} * 25 = 50 \text{ thousand taka}$$

Example (grouped data)

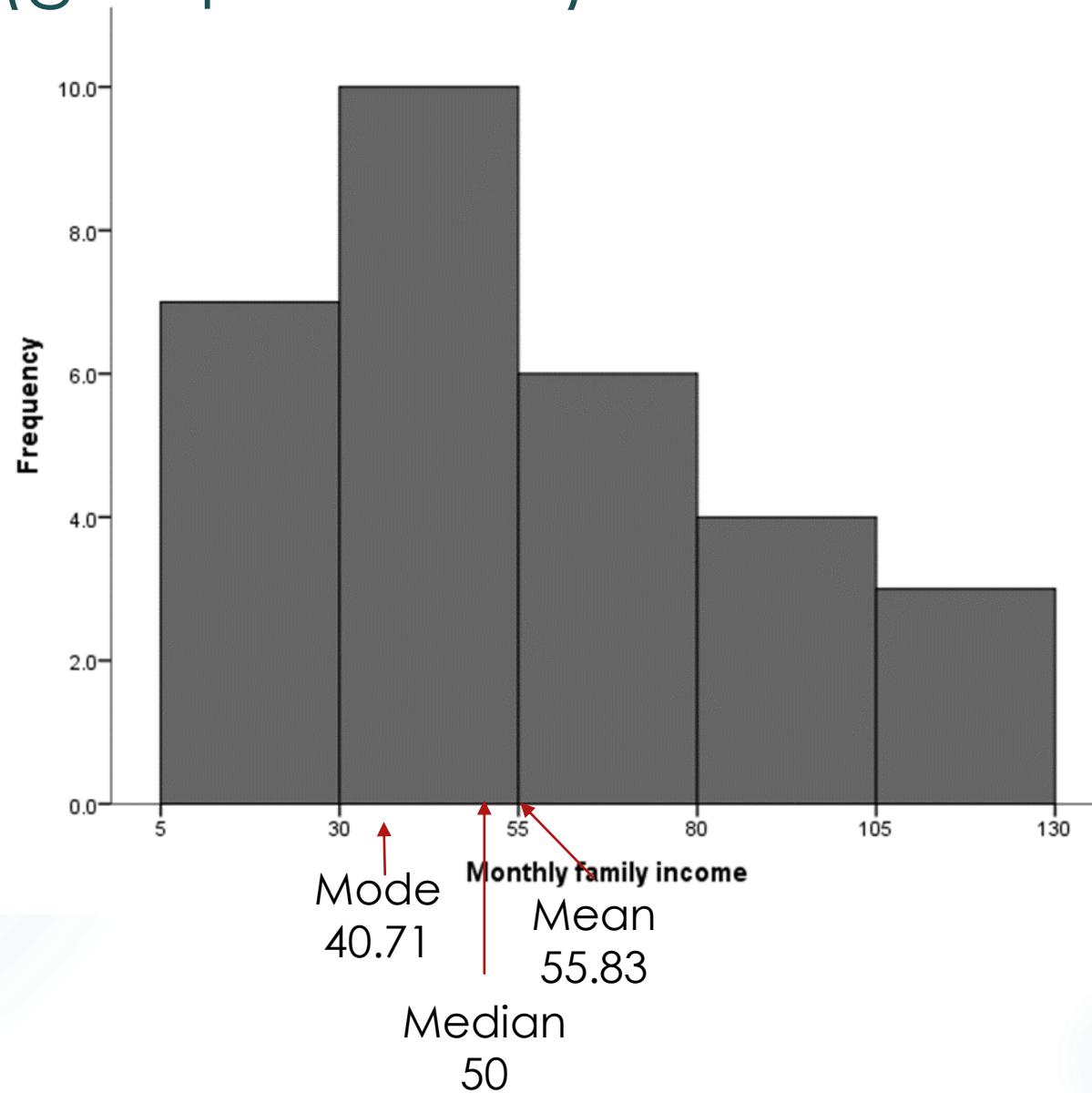
Monthly income ('000 tk)	No. of respondents (f_i)
5-30	7
30-55	10
55-80	6
80-105	4
105-130	3
Total	30

Comparatively a higher number of the respondents have monthly family income around 40,000 taka

$$Mode = L_o + \frac{\Delta_1}{\Delta_1 + \Delta_2} * c = 30 + \frac{3}{3 + 4} * 25 = 40.71 \text{ thousand taka}$$

Example (grouped data)

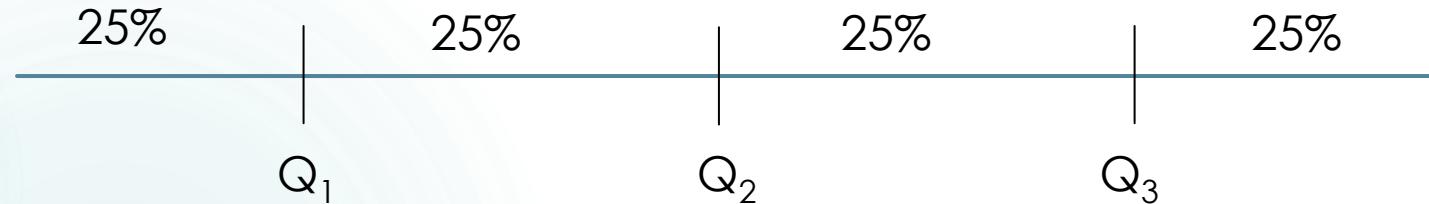
In graphs-



Median like measures

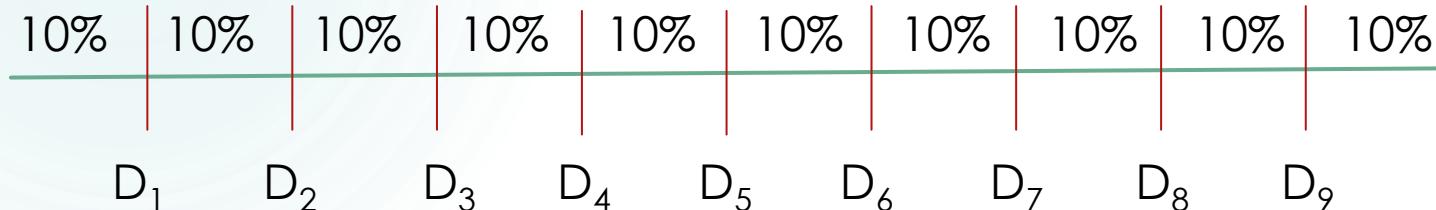
Quartiles:

Quartiles Divides the whole distribution into 4 equal parts



Deciles:

Deciles divide the whole distribution into 10 equal parts



Median like measures

40

Percentiles:

Percentiles divide the whole distribution into 100 equal parts

Median like measures

Formulas for finding percentiles:

For raw data,

- If $\frac{in}{100}$ is an integer- (for $i= 1, 2, 3, \dots, 99$)

$$P_i = \frac{1}{2} \left[\left(\frac{in}{100} \right)^{th} \text{value} + \left(\frac{in}{100} + 1 \right)^{th} \text{value} \right]$$

- If $\frac{in}{100}$ is not an integer-

$$P_i = \text{next integer}^{th} \text{ value of } \frac{in}{100}$$

Median like measures

Example:

Weekly income of 6 respondents (in taka)-

2500, 3900, 3500, 5000, 4000, 3500

Find Q1, Q2, Q3.

Median like measures

Example:

Organizing in ascending order- 2500, 3500, 3500, 3900, 4000, 5000

So, the quartiles-

$$\begin{aligned}Q_1 &= P_{25} = \text{next integer}^{\text{th}} \text{value of } \frac{25n}{100} = \text{next integer}^{\text{th}} \text{value of } \frac{150}{100} \\&= \text{next integer}^{\text{th}} \text{value of } 1.5 = 2^{\text{nd}} \text{ value} = 3500\end{aligned}$$

Median like measures

Example:

$$Q_2 = P_{50} = Median = \frac{1}{2} \left[\left(\frac{n}{2} \right)^{th} value + \left(\frac{n}{2} + 1 \right)^{th} value \right] = 3700$$

$$Q_3 = P_{75} = \text{next integer}^{th} value of \frac{75n}{100} = \text{next integer}^{th} value of \frac{450}{100} \\ = \text{next integer}^{th} value of 4.5 = 5^{th} value = 4000$$

Median like measures

Formulas for finding percentiles:

For grouped data-

$$P_i = L_i + \frac{\frac{in}{100} - F_i}{f_i} * c \quad i= 1, 2, 3, \dots, 99$$

L_i = Lower class limit of the i^{th} percentile class

n = Total frequency

F_i = Cumulative frequency of the i^{th} pre-percentile class

f_i = frequency of the i^{th} percentile class

c = class interval

Geometric Mean

The geometric mean G of n positive rates x_1, x_2, \dots, x_n is defined as the n th positive root of the product of the rates. Symbolically,

$$G = (x_1 x_2 x_3 \dots x_n)^{\frac{1}{n}} - 1$$

Where x_i 's are rate of changes.

If x_i 's are the value for a given time t , then,

$$G = \sqrt[n]{\frac{x_n}{x_0}} - 1$$

G provides average rates of change.

Geometric Mean

Uses:

- Geometric mean is useful when the data is in geometric progression

Example: At year 2000, the profit was 10000.

Year	Profit
2001	12000
2002	15000
2003	20000
2004	18000
2005	22000
2006	27000

Geometric Mean

Example: At year 2000, the profit was 10000.

Year	Profit	Increase rate	Increased rate (x)
2001	12000	0.20	1.20
2002	15000	0.25	1.25
2003	20000	0.33	1.33
2004	18000	-0.10	0.90
2005	22000	0.22	1.22
2006	27000	0.23	1.23

$$\begin{aligned}
 G &= (x_1 x_2 x_3 \dots x_n)^{\frac{1}{n}} - 1 = (1.20 * 1.25 * 1.33 * 0.90 * 1.22 * 1.23)^{\frac{1}{6}} - 1 \\
 &= 1.18 - 1 = 0.18 = 18\% \text{ increase per year.}
 \end{aligned}$$

Or,

$$G = \left(\frac{y_{2006}}{y_{2000}} \right)^{\frac{1}{6}} - 1 = \left(\frac{27000}{10000} \right)^{\frac{1}{6}} = 0.18 = 18\% \text{ increase per year}$$

Harmonic Mean

Harmonic mean is defined as the reciprocal of the arithmetic mean of the reciprocals of the individual values.

$$H = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}}$$

For grouped data,

$$H = \frac{\sum f_i}{\frac{f_1}{x_1} + \frac{f_2}{x_2} + \dots + \frac{f_k}{x_k}} = \frac{n}{\frac{f_1}{x_1} + \frac{f_2}{x_2} + \dots + \frac{f_k}{x_k}}$$

Harmonic Mean

Uses:

When dealing with rates, harmonic mean is more appropriate.

Example:

Suppose you are travelling From Mosul to Duhok by car. The distance between Duhok and Mosul is 60km. You drive your car for the first 15km at a speed of 70km per hour and the second 30km at a rate of 80km per hour and the remaining 15 kilometers at a speed of 70km per hour. What is the average speed with which you traveled from Duhok to Mosul?