
Computer Organization & Architecture

Cybersecurity Department

Course Code: CBS219

Lecture 3: Data Representation

Halal Abdulrahman Ahmed

Lecture Outline

• Introduction to Data Representation

• Binary, Octal, Decimal, Hexadecimal Systems

• Number System Conversions

• Signed vs Unsigned Numbers

• 1’s & 2’s Complement (Negative Numbers)

• Floating-Point Representation (Real Numbers)

• Parity Bit & Error Detection

• Bits, Bytes & Word Size

• Text Code

Learning Outcomes

By the end of this lecture, students will be able to:

• Explain why computers use binary to represent data

• Convert numbers between binary, octal, decimal & hexadecimal

• Distinguish between signed and unsigned integers

• Represent negative numbers using 1’s and 2’s complement

• Understand floating-point (IEEE-754) representation basics

• Explain parity bit and its role in error detection

• Define bit, byte, word-size, ASCII, and Unicode

Data Representation

• Computers do not understand human language; they understand data within the

prescribed form. Data representation is a method to represent data and encode it in a

computer system.

• They understand only 0 and 1 and represent numbers, text, and other information

using binary digits (bits).

Data Representation

• Everything, numbers, letters, images, and sounds must be converted into binary

form. Understanding data representation helps in memory design, error detection, and

cybersecurity.

Some Common Data Representation Methods

Computers represent data in the following forms:

• Number System

• Bits and Bytes

• Text Code

Number System

Number System

A computer system considers numbers as data; it includes integers, decimals, and complex

numbers. All the inputted numbers are represented in binary formats like 0 and 1. A number

system is categorized into four types:

1. Binary

2. Octal

3. Decimal

4. Hexadecimal number

Binary Number System

A binary number system is a base of all the numbers considered for data representation in the

digital system. A binary number system consists of only two values, either 0 or 1; so its base is 2.

It can be represented to the external world as (10110010)2. A computer system uses binary digits

(0s and 1s) to represent data internally.

Binary (Base 2)

Bit Position 7 6 5 4 3 2 1 0

Value (2ⁿ) 128 64 32 16 8 4 2 1

Octal Number System

The octal number system represents values in 8 digits. It consists of digits 0,12,3,4,5,6, and 7; so

its base is 8. It can be represented to the external world as (324017)8.

Decimal Number System

Decimal number system represents values in 10 digits. It consists of digits 0, 12, 3, 4, 5, 6, 7, 8,

and 9; so its base is 10. It can be represented to the external world as (875629)10.

Hexadecimal Number System

Hexadecimal number system represents values in 16 digits. It consists of digits 0, 12, 3, 4, 5, 6, 7,

8, and 9 then it includes alphabets A, B, C, D, E, and F; so its base is 16. Where A represents 10,

B represents 11, C represents 12, D represents 13, E represents 14 and F represents 15.

Number Systems Overview

System Base (Radix) Digits Used Example Usage

Decimal 10 0–9 845 Human counting

Binary 2 0, 1 101101 Computer processing

Octal 8 0–7 527₈ Old systems shorthand

Hexadecimal 16 0–9, A–F 3AF₁₆ Memory addressing

Example 1

Example 2

Example 3 Example 4

Example 5

Example 6

Example 7

Example 8

Example 9

Example 10

Example 11

Example 12

Unsigned vs Signed Numbers

Type Range (8-bit) Example

Unsigned 0 to 255 00001011 = 11

Signed (2’s Complement) -128 to +127 11111011 = -5

Unsigned Numbers:

Only represent positive values.

All bits are used for the number itself.

For 8 bits → range is 0 to 255.

(00000000₂ = 0, 11111111₂ = 255)

Signed Numbers (2’s Complement):

Can represent positive and negative values.

The leftmost bit shows the sign:

• 0 → positive

• 1 → negative

For 8 bits → range is –128 to +127.

(10000000₂ = –128, 01111111₂ = +127)

1’s and 2’s Complement

Operation Example Result

1’s Complement Invert bits of 00000101 11111010

2’s Complement Invert + 1 11111011 (–5)

2’s Complement Arithmetic

Operation Binary Result

(+5) + (–5) 00000101 + 11111011 00000000

(–3) + (–2) 11111101 + 11111110 11111011 (–5)

Floating-Point Representation

Floating-point is how computers store real numbers (numbers with decimals). Computers use

the IEEE-754 standard to store these numbers. Floating-point is how computers store decimal

numbers. It breaks the number into 3 parts: sign (positive/negative), exponent (size), and mantissa

(value).

Part Bits Purpose

Sign 1 bit Tells if number is + or − (0 = +, 1 = −)

Exponent 8 bits Shows how big or small the number is

Mantissa (Fraction) 23 bits Stores the decimal part

Parity Bit

A parity bit is an extra bit added to a binary message to detect errors when data is sent

from one device to another. It checks whether the number of 1s is even or odd.

Type Rule Goal

Even Parity Add 1 if number of 1s is odd Make total 1s even

Odd Parity Add 1 if number of 1s is even Make total 1s odd

Example of Parity Bit

Type Action Result

Even Parity Already even → add 0 10100

Odd Parity Need odd → add 1 10101

Original data: 1010

Number of 1s = 2 (even)

Bits and Bytes

Bits

• A bit is the smallest data unit that a computer uses in computation; all the computation tasks

done by the computer systems are based on bits. A bit represents a binary digit in terms of 0 or

1. The computer usually uses bits in groups. It's the basic unit of information storage and

communication in digital computing.

Bytes

• A group of eight bits is called a byte. Half of a byte is called a nibble; it means a group of four

bits is called a nibble. A byte is a fundamental addressable unit of computer memory and

storage. It can represent a single character, such as a letter, number, or symbol using encoding

methods such as ASCII and Unicode.

Bits and Bytes

Bits and Bytes

Unit Size Example Use

Bit 1 binary digit 0 or 1 Smallest unit of data

Nibble 4 bits 1010 Used in hexadecimal

Byte 8 bits 01000001 Represents a single ASCII

character

Word 16–64 bits Varies by CPU Represents data or instruction size

How many bits are 2 bytes?

16 bits.

What is a “word” in computer architecture?

• A word is the natural unit of data that a CPU can process or transfer at once.

• The CPU’s word size depends on how many bits it can handle in one operation.

CPU Type Word Size Equivalent in Bytes

32-bit CPU 32 bits 4 bytes

64-bit CPU 64 bits 8 bytes

• A 32-bit CPU means its word size is 32 bits (4 bytes). It processes 32 bits of data in a

single operation.

• A 64-bit CPU has a word size of 64 bits (8 bytes). It can handle 64 bits of data in one

operation.

Text Code

Text Code

A Text Code is a static code that allows a user to insert text that others will view when

they scan it. It includes alphabets, punctuation marks and other symbols. Some of the most

commonly used text code systems are:

• ASCII

• Unicode

ASCII

• ASCII stands for American Standard Code for Information Interchange. It is an 8-bit code that

specifies character values from 0 to 127. ASCII is a standard for the Character Encoding of

Numbers that assigns numerical values to represent characters, such as letters, numbers,

exclamation marks and control characters used in computers and communication equipment

that are using data.

• ASCII originally defined 128 characters, encoded with 7 bits, allowing for 27 (128) potential

characters. The ASCII standard specifies characters for the English alphabet (uppercase and

lowercase), numerals from 0 to 9, punctuation marks, and control characters for formatting and

control tasks such as line feed, carriage return, and tab.

ASCII Code Examples

Character Decimal Binary

A 65 01000001

B 66 01000010

a 97 01100001

0 48 00110000

Unicode

It is a worldwide character standard that uses 4 to 32 bits to represent letters, numbers and

symbols. Unicode is a standard character encoding which is specifically designed to provide a

consistent way to represent text in nearly all of the world's writing systems. Every character is

assigned a unique numeric code, program, or language. Unicode offers a wide variety of

characters, including alphabets, ideographs, symbols, and emojis.

Data Representation and Cybersecurity

Concept Application

Binary patterns Used in encryption and hashing

ASCII/Unicode Encoding attacks (XSS, SQL Injection)

Parity/ECC Error detection and correction

Overflow Buffer overflow exploits

Further Learning Resources

• Number System Conversion Practice

WorkyBooks – Octal Number System

Beginner-friendly explanation of the octal system with examples and quizzes.

• Number System Conversions (Blog)

WordPress – Conversion of Number Systems

Simple explanation of how to convert between binary, decimal, octal, and hexadecimal systems.

https://www.workybooks.com/resources/math-vocabulary/octal-number-system?utm_source=chatgpt.com
https://www.workybooks.com/resources/math-vocabulary/octal-number-system?utm_source=chatgpt.com
https://www.workybooks.com/resources/math-vocabulary/octal-number-system?utm_source=chatgpt.com
https://computersystemsandplatformtechnologies320380580.wordpress.com/conversion-of-number-systems/?utm_source=chatgpt.com
https://computersystemsandplatformtechnologies320380580.wordpress.com/conversion-of-number-systems/?utm_source=chatgpt.com
https://computersystemsandplatformtechnologies320380580.wordpress.com/conversion-of-number-systems/?utm_source=chatgpt.com

	Slide 1: Computer Organization & Architecture
	Slide 2: Lecture Outline
	Slide 3: Learning Outcomes
	Slide 4: Data Representation
	Slide 5: Data Representation
	Slide 6: Some Common Data Representation Methods
	Slide 7: Computers represent data in the following forms:
	Slide 8: Number System
	Slide 9: Number System
	Slide 10: Binary Number System
	Slide 11: Binary (Base 2)
	Slide 12: Octal Number System
	Slide 13: Decimal Number System
	Slide 14: Hexadecimal Number System
	Slide 15: Number Systems Overview
	Slide 16
	Slide 17: Example 1
	Slide 18: Example 2
	Slide 19: Example 3
	Slide 20: Example 5
	Slide 21: Example 6
	Slide 22: Example 7
	Slide 23: Example 8
	Slide 24: Example 9
	Slide 25: Example 10
	Slide 26: Example 11
	Slide 27: Example 12
	Slide 28: Unsigned vs Signed Numbers
	Slide 29: 1’s and 2’s Complement
	Slide 30: 2’s Complement Arithmetic
	Slide 31: Floating-Point Representation
	Slide 32: Parity Bit
	Slide 33: Example of Parity Bit
	Slide 34: Bits and Bytes
	Slide 35
	Slide 36: Bits and Bytes
	Slide 37
	Slide 38: What is a “word” in computer architecture?
	Slide 39: Text Code
	Slide 40: Text Code
	Slide 41: ASCII
	Slide 42: ASCII Code Examples
	Slide 43: Unicode
	Slide 44: Data Representation and Cybersecurity
	Slide 45: Further Learning Resources
	Slide 46

