

Database Fundamentals

Cybersecurity Department

Course Code: CBS213

Lecture 3: Keys in the Relational Model

Halal Abdulrahman Ahmed

Lecture Outlines

- Why keys are important
- Types of keys

Learning Outcomes

By the end of this lecture, students will be able to:

- Explain the **purpose and importance of keys** in relational databases.
- Identify and differentiate between **types of database keys**, including super, candidate, primary, alternate, unique, foreign, composite, surrogate, natural, secondary, and partial keys.
- Describe how keys are used to **enforce data integrity** and **establish relationships** between tables.

Recap - Keys in the Relational Model

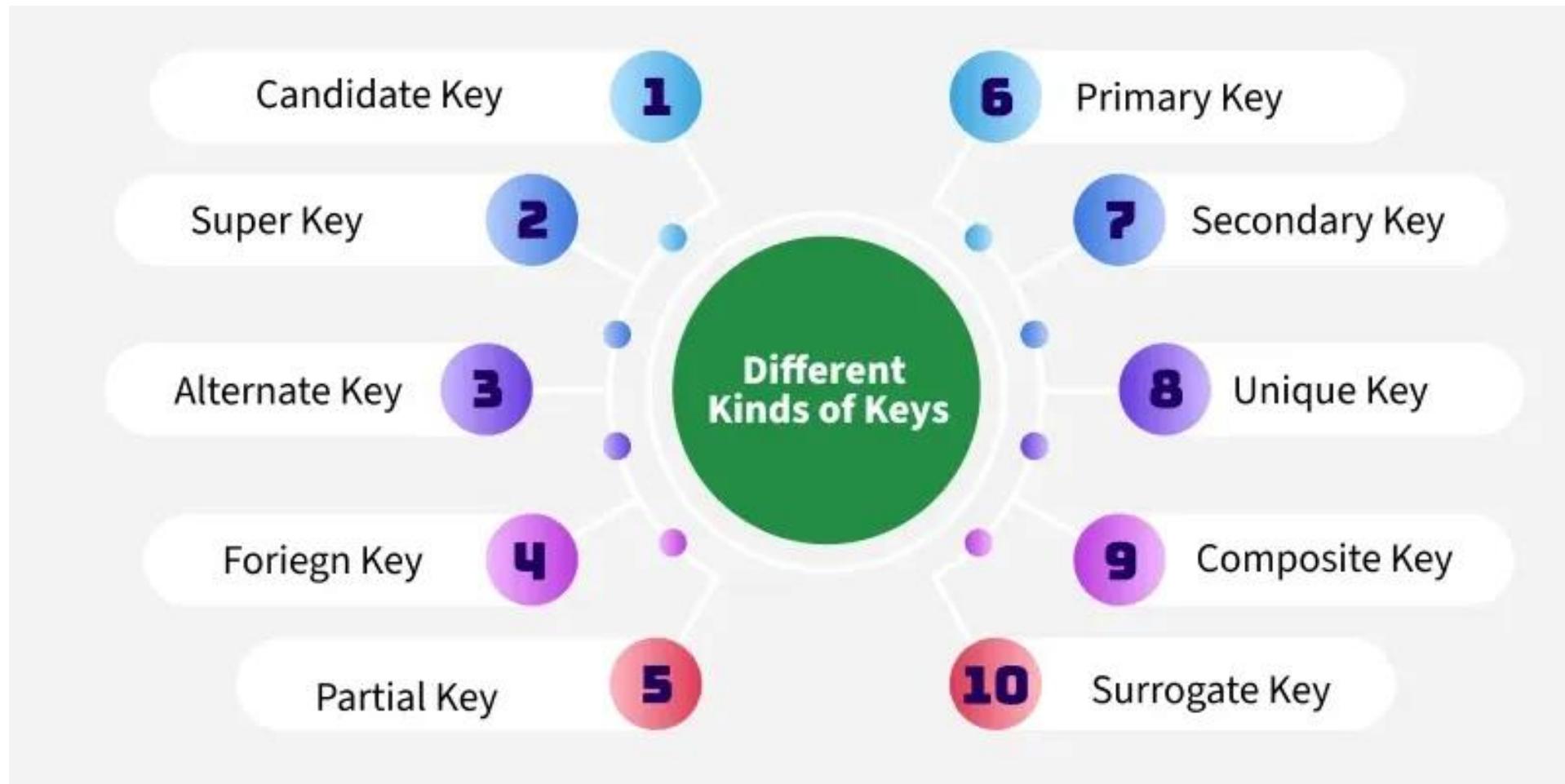
Key Type	Description	Example
Primary Key	Uniquely identifies each record	Student_ID in Students table
Foreign Key	Points to a primary key in another table	Course_ID in Enrollments table
Composite Key	Combination of attributes that uniquely identify a record	(Student_ID, Course_ID) in Enrollments
Candidate Key	Any field that could serve as a unique identifier	Email, Student_ID
Alternate Key	Candidate key not chosen as the primary	Email
Super Key	Any combination of attributes that ensures uniqueness	(Student_ID, Name)

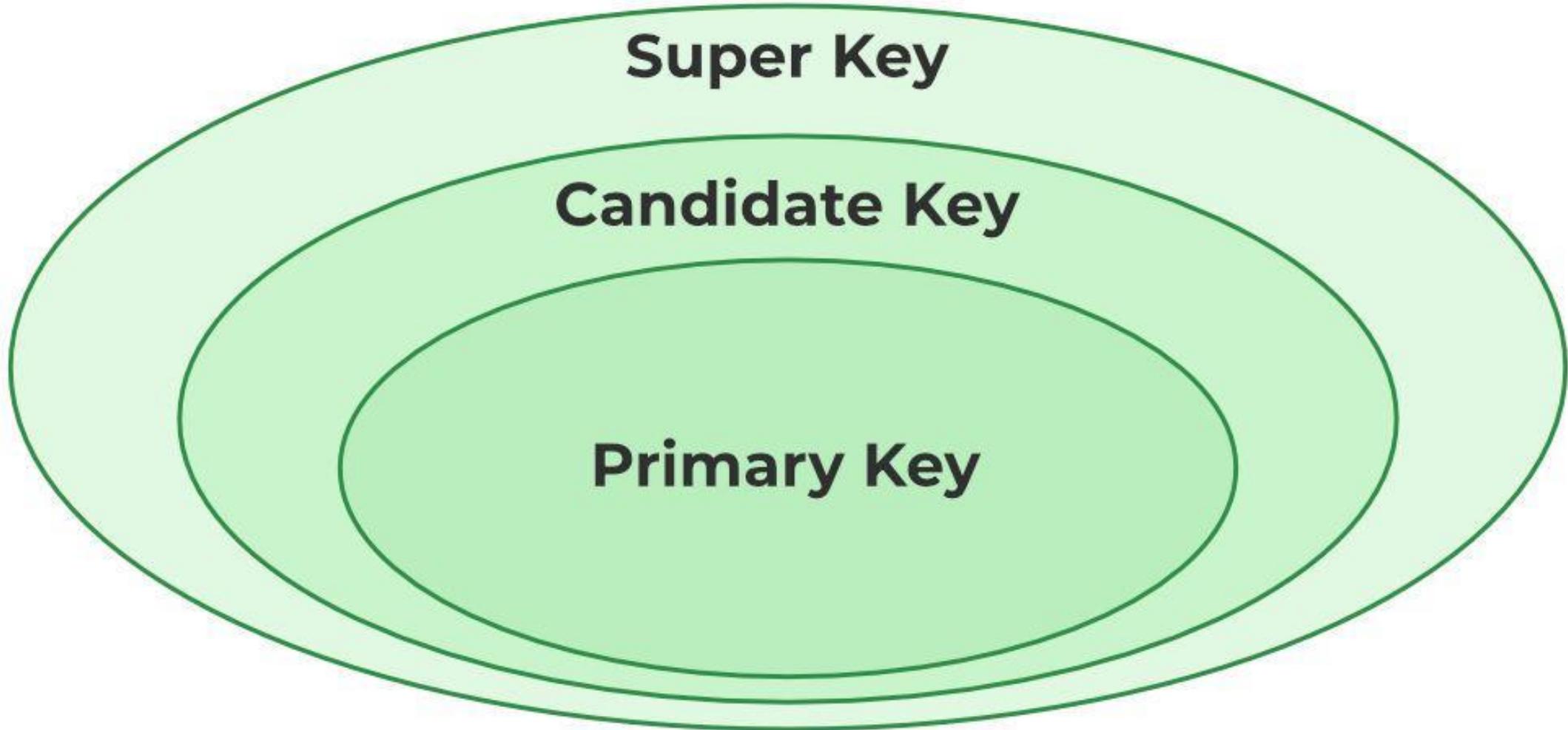
What Are Keys?

What Are Keys?

- A **key** is one or more fields used to **uniquely identify each record** in a table and **connect tables together** in a relational database.
- Keys **prevent duplicate records** and **ensure accuracy**.

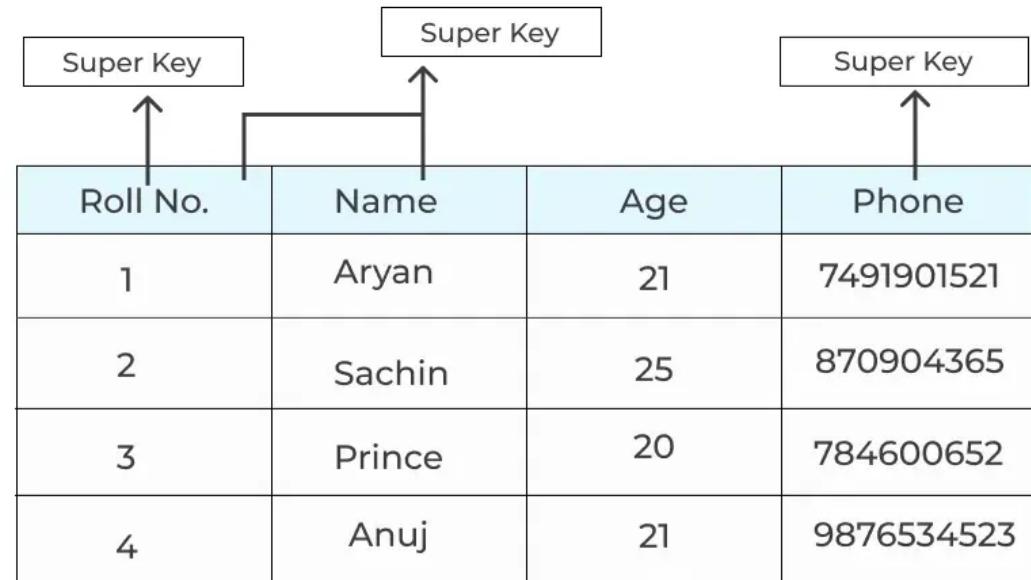
Keys are essential for:


- Searching for a specific row
- Connecting tables
- Preventing duplicate data
- Enforcing rules in tables



Why Keys Are Important

- Every record must be identified uniquely
- Keys help **enforce integrity**
- Keys are used to **create relationships** between tables
- Keys prevent accidental duplicate data
- Keys protect data quality


Types of Database Keys

Super Key

- A **Super Key** is **any field or combination of fields** that can **uniquely identify a record** in a table.
- Every **Primary Key** is a **Super Key**, but **not every Super Key is a Primary Key**.
- A Super Key **may contain extra unnecessary fields**.

Roll No.	Name	Age	Phone
1	Aryan	21	7491901521
2	Sachin	25	870904365
3	Prince	20	784600652
4	Anuj	21	9876534523

Candidate Key

- A **Candidate Key** is a field (or combination of fields) that can **uniquely identify a record** in a table.
- A table can have **more than one** candidate key
- Candidate keys must be **unique, minimal and not null**

CustomerID	Email	Phone
C01	a@gmail.com	07701234567
C02	b@yahoo.com	07509876543

Candidate Key

Primary Key (PK)

- Selected **one** candidate key
- Used to **uniquely identify** each record
- Must be **unique** and **not null**
- **Only one per table**

Customer ID	Forename	Surname
1	Simon	Jones
2	Emma	Price
3	Laura	Jones
4	Jonathan	Hale
5	Emma	Smith

Simple primary key

Properties of a Good Primary Key

A primary key must:

- ✓ Be unique
- ✓ Never change
- ✓ Not allow null values
- ✓ Be simple and short

Bad primary keys:

- Names
- Phone numbers
- Emails

 They may change or repeat

Surrogate Key

- A **surrogate key** is a **system-generated primary key**.
- Has **no business meaning**
- Preferred in most database designs
- Simple and **never changes**

OrderID (Surrogate Key)	TotalAmount
5001	23,000

Natural Key

- A **Natural Key** is a key that comes from **real-world data** and can **uniquely identify a record** in a table.
- It already exists naturally **outside the database** and has a **real meaning**.
- It can be used as a **Candidate Key** and **may be chosen as a Primary Key**, but it is **not always recommended** because it **can change**.

Natural Key vs Surrogate Key

Feature	Natural Key	Surrogate Key
Meaning	Comes from real world (Email, SSN)	System-generated
Stability	Might change	Never changes
Use	Simple systems	Professional DB design

Composite Key

A **Composite Key** uses **two or more columns together** to uniquely identify a record.

OrderID	ProductID	Quantity
5001	101	2
5001	105	1

Composite Primary Key = (OrderID + ProductID)

Alternate Key

- An **Alternate Key** is a **candidate key not selected** as the primary key.

Example:

Candidate keys = {CustomerID, Email}

Selected PK = CustomerID

Alternate Key = Email

Unique Key

- A **Unique Key** ensures that all values in a column (or group of columns) are **unique** across the table.
- Similar to Primary Key, but **can accept one NULL value**
- It is not the main identifier of the table
- Enforces data integrity

UserID (PK)	Email (Unique)
1	a@gmail.com
2	b@yahoo.com

Foreign Key (FK)

- A **foreign key** connects tables. It is a **primary key from another table**.

Primary Key

The diagram illustrates a primary key relationship. A vertical arrow labeled 'Primary Key' points to the 'ID' column of the 'Student Details' table. A horizontal arrow labeled with a key symbol points from the 'ID' column of the 'Student Details' table to the 'ID' column of the 'Student Marks' table, indicating that the 'ID' column in 'Student Details' is a primary key that serves as a foreign key in 'Student Marks'.

ID	Name	Course
2041	Tom	Java
2204	John	C++
2043	Alice	Python
2032	Bob	Oracle

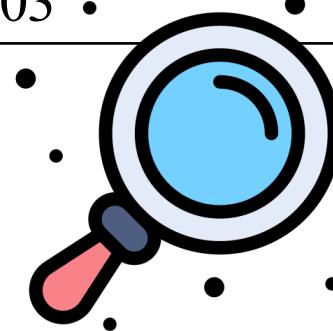
Student Details

Foreign Key

ID	Marks
2041	65
2204	55
2043	73
2032	62

Student Marks

Secondary Key

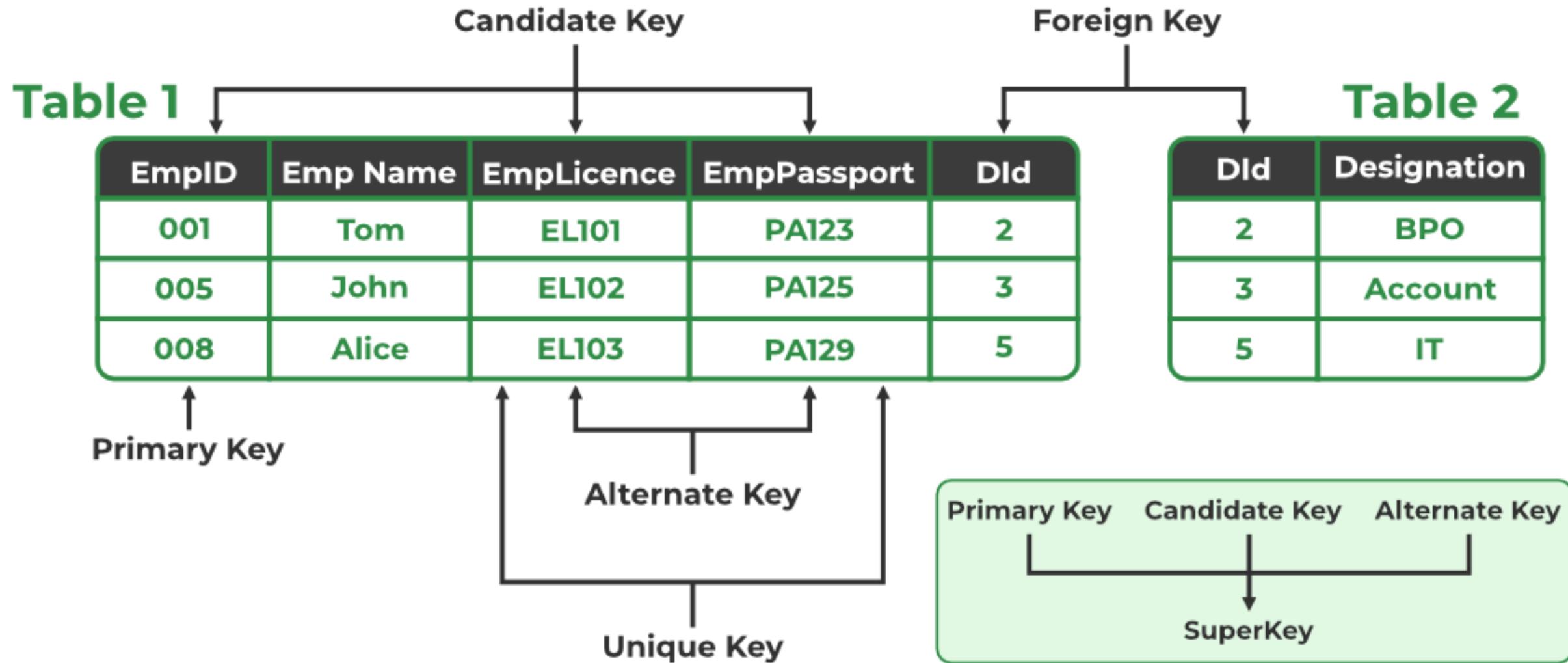

A **Secondary Key** is used to **search or sort data**, but **cannot uniquely identify** a record.

- Not used to define table relationships
- Not unique
- Helps improve data retrieval

ProductID	ProductName	Category
101	Milk	Dairy
102	Rice	Grains
103	Cheese	Dairy

Secondary Keys:

- {ProductName}
- {Category}


These help search like: *"Show all products in Dairy category"*

Partial Key

- A **Partial Key** is a key that can **uniquely identify a record within a weak entity** but **only when linked to another table** (owner entity).
- Used in **weak entity relationships**.

OrderID	ProductID	Quantity
5001	101	2
5001	103	1

- **ProductID is a Partial Key**
- It identifies each item **only when combined with OrderID**

Key Type	Used in MySQL?	Purpose
Super Key	No	Only for theoretical understanding
Candidate Key	No	Used during design thinking
Primary Key (PK)	Yes	Enforced in SQL
Unique Key	Yes	Enforced in SQL
Foreign Key (FK)	Yes	Enforced in SQL
Composite Key	Yes	Enforced in SQL
Surrogate Key	Yes (AUTO_INCREMENT)	Enforced in SQL
Secondary Key	Yes (INDEX)	Enforced in SQL
Partial Key	No	ER modeling only

References

- Stallings, W. (2022). *Computer organization and architecture: Designing for performance* (11th ed.). Pearson.
- Elmasri, R., & Navathe, S. B. (2016). *Fundamentals of database systems* (7th ed.). Pearson.

Any
Question?