Computer Organization & Architecture

Cybersecurity Department
Course Code: CBS219

Lecture 4: CPU Organization: Control, ALU, & Registers

Halal Abdulrahman Ahmed

Lecture Outline

* Overview of CPU Components

* Control Unit (CU) & Instruction Control
* Control Signals & Execution Steps

* Status Flags & CPU Decisions

* System Clock & Synchronization
 Arithmetic Logic Unit (ALU)

* Arithmetic & Logical Operations

* Shift & Rotate Instructions

* Registers & Their Types

Lecture Outcomes

By the end of this lecture, students will be able to:

* Identify main internal units of the CPU (CU, ALU, Registers, Clock)
* Explain the role of the Control Unit in instruction execution

* Describe control signals and their purpose

* Understand and interpret CPU flags (Zero, Carry, Sign, Overflow)

* Explain the function of the system clock in CPU timing

* Understand ALU operations: arithmetic, logical, shifts, rotates

* Recognize different types of registers and their roles

What is Inside the CPU?

Central Processing Unit (CPU)

Control Unit

Clock Circuit Latch Circuit Reset Ciruit

ALU (Arithmatic &

Input Unit —>» Logic Unit) — OQutput Unit

Memory Unit

Cache Memory

Main Memory

Control Unit

Main Components of CPU

* Control Unit: The Control Unit controls and coordinates all activities inside the CPU. It sends
control signals to other components and uses the system clock to manage timing, but it does not
generate the clock. It makes sure each operation happens in the correct order. For example, it

controls the movement of data from cache or registers to the ALU when needed.

* Arithmetic and Logic Unit (ALU): The ALU handles arithmetic tasks (like addition,
subtraction, multiplication, division) and logical tasks (like AND, OR, comparisons). It uses

addition for all calculations.

* Memory Unit: The memory unit stores data and instructions. Older CPUs used registers, but
modern ones also have fast cache memory. The CPU fetches data from RAM, ROM, or hard

disks and stores it 1n registers or cache during tasks.

Introduction to the Control Unit
* The Control Unit (CU) 1s the part of the CPU that controls everything happening

inside the computer during instruction execution. It does not perform calculations
like the ALU.

* Instead, 1t gives orders to other CPU parts on what to do, when to do it, and how to
do it. It reads instructions from memory one by one and makes sure they are
executed correctly.

* It acts like a traffic controller inside the CPU making sure data goes to the right place

at the right time.

Why is the Control Unit Needed?

e Without the Control Unit, the CPU would not know what to do with instructions.

 The CU ensures:

* Every instruction is executed step by step.

The CPU fetches the correct instruction from memory.

The ALU knows which operation to perform.

The registers know where to move data.

Memory receives read/write commands.

* It also synchronizes operations using clock pulses (timing).

Main Jobs of the Control Unit

The Control Unit has five main responsibilities:

Fetch instructions from memory.

Decode instructions to understand what they do.

Send control signals to execute instructions.

Manage program order using the Program Counter (PC).

Control data movement between registers, ALU, and memory.

What are Control Signals?

* Control signals are electrical commands sent by the CU.
* They tell other parts of the CPU what to do.

Examples:

* READ — Get data from memory.

WRITE — Store data in memory.

LOAD R1 — Load data into register R1.

ALU =ADD — Tell ALU to perform addition.

PC = PC + 1 — Move to next instruction.

Without control signals, hardware like ALU and registers will just sit idle and do nothing.

How Control Signals Work (Simple Example)

Imagine this instruction: ADD R1, R2
e This means: R1 = R1 + R2
To do this, the Control Unit sends:

* Signal to read values from register R1 and R2.

Signal to send values to ALU.
Signal to set ALU to ADD mode.

Signal to store result back in R1.

Signal to update flags (Zero, Carry, Overflow).

So this one instruction needs many internal steps controlled by CU.

How Does a CPU Control Unit work?

A control unit receives data from the user and translates it into control signals that are

subsequently delivered to the central processor. The processor of the computer then instructs the

associated hardware on what operations to do. Because CPU architecture differs from

manufacturer to manufacturer, the functions performed by a control unit in a computer are

dependent on the CPU type.

Instruction Register

l Control signals
within CPU
—
Flags Control signals from
— Control control bus
Unit <
Clock ——p >

Control signals to
control bus

Block Diagram of the Control Unit

Control
Bus

Flag (Status Register)

The Flag Register, also called the Status Register or Condition Code Register, is a special CPU

register that stores status information about the result of the most recent ALU operation.
Each flag is 1 bit (0 or 1) and is automatically set (1) or cleared (0) by the ALU.

The Control Unit reads these flags to decide what to do next during program execution, especially for

conditional instructions such as jumps and loops.
Flags help the CPU make decisions based on results.

Flags allow the Control Unit to control program flow using instructions like JZ (Jump if Zero), JC (Jump

if Carry), JINZ (Jump if Not Zero), etc.

Flag (Status Register)
Flag [Meaming [Whenitisset() |

7. — Zero Flag Result 1s zero If operation result = 0

C — Carry Flag Carry or borrow occurred In unsigned arithmetic overflow
S — Sign Flag Result 1s negative If MSB (most significant bit) = 1
O — Overflow Flag Arithmetic overflow In signed arithmetic overflow
Example:

If the CPU executes 5 — 5, the result is 0, so Zero Flag (Z)=1.
If CPU executes 200 + 100 in 8-bit, result exceeds 255 — Carry Flag = 1.
If result = -3, binary begins with 1 — Sign Flag = 1.

Clock

The clock 1s like the heartbeat of the CPU.

It sends regular electronic pulses that control the timing of everything inside the CPU.

Each pulse 1s called a clock cycle.

Every step the CPU does (fetch, decode, execute) happens on a clock cycle.

The Control Unit uses the clock to do things step by step in the correct order.

Without the clock, the CPU would not work because nothing would happen in the right time.

Arithmetic Logic Unit (ALU)

i[f(,] 20t -F0190) F= = ma= mdth

o 2
Ay [96) 4 e B s s D At
P T 75,\)
0.4\ 3k y_mx+b
& BTl Mk Wi Loibwiz]
il Pl 5 oo =5
(h%) =% SJ-Ayslnlxhc sinxdx <~ CosxAx +-¢
. o (x))d‘)cd)) IO
gptoyx-1 = -—k*
ffo«)
& cu U.S/ o

\‘2. A JT (c,)‘(-(‘OC\}‘T)Y@ L

[;,] B- 4“ I or 42 o A cx+|/\{—c;s+h))
)‘+E = o
[}

4ar

A" == |ex- 4 Asin (G0

o f“dwmﬂj// = kf{vh (8

~ X Ja _‘j v..v.&\/ kj +Asin (wh)
W TR Ml ol f e)-f)

Introduction to Arithmetic Logic Unit (ALU)

« The ALU 1s a digital circuit within the CPU that performs all arithmetic and logical
operations. It takes input from registers, processes the operation, and sends the result back

to a destination register or memory.
* The ALU takes the input operands and an instruction and outputs the result.
* Performs operations like addition, subtraction, AND, OR, NOT, etc.

* Controlled by the control unit based on the instruction type.

Introduction to Arithmetic Logic Unit (cont.)

* In some processors, the ALU 1s divided into two units, an arithmetic unit (AU) and a logic unit
(LU). Some processors contain more than one AU for example, one for fixed-point operations

and another for floating-point operations.

 The ALU 1is a vital part of modern CPUs. Most CPUs contain many subcomponents for
various functions, including accumulators, registers, a memory manager, an ALU, a floating-
point unit (FPU) and cache memory. New processors may also have a graphics processing unit

(GPU) and a neural processing unit (NPU).

What is the purpose of an arithmetic logic unit?

* The purpose of an ALU 1s to speed up a CPU's overall processing by performing math and logic

functions.

* By splitting out these functions, the different portions of the CPU can be more specialized and

perform different operations simultaneously.

What is the purpose of an arithmetic logic unit? (cont.)

* In early microprocessors, the main CPU could only perform basic operations, and more
complex processes, like math, required many steps and took a long time to perform. A separate
chip, often called a math coprocessor, could be added to offload these slow functions so the

CPU could perform other work.

* Modern CPU cores use a pipelining approach to work on multiple things at the same time.

With pipelining, for example, the memory manager can load items into registers while the ALU

is performing an add operation.

How does an arithmetic logic unit work?

* Typically, the ALU has direct access to the processor controller, main memory (RAM in a PC)
and the input/output (I/O) of the CPU. I/O flows along an electronic path called a bus.

* The input consists of an instruction word, sometimes called a machine instruction word, that

contains an operation code (opcode), one or more operands, and sometimes a format code.

* The opcode tells the ALU what operation to perform, and the operands are used in the

operation.

When the CPU executes an instruction:

It takes two inputs (operands), like numbers stored in registers.

*[t performs an operation on them, such as addition or comparison.

*The instruction format tells the CPU how to treat the data, as normal integers

(fixed-point) or as decimal numbers (floating-point).

Operand vs. operator Steps:

Operators » Take operand 1 from X
| | Take operand 2 from Y
e Perform addition » X +Y=Z
X + y — Z e Store the result back in Z
{ * * * Update flags (Zero, Carry, Overflow, etc.)
* If everything worked, no error is stored.

Operands Results

Functions and Operations of ALU

1. Arithmetic Operations
2. Logical Operations

3. Shift Operations

Arithmetic Operations

Arithmetic Operations

 ALU performs arithmetic operations to carry out basic mathematical calculations on binary

numbers. Operations include addition, subtraction, increment, and decrement.

* Multiplication and division are arithmetic operations, but multiplication and division are
not always performed by the basic ALU. In modern CPUs, they are usually done by a
separate arithmetic unit (Multiplier/Divider Unit) that works alongside the ALU. It is a
separate hardware unit called the Multiplier/Divider Unit (part of an extended ALU or

Execution Unit), especially in modern CPUs.

Arithmetic Operations (cont.)

Used during instruction execution for tasks like ADD, SUB, INC, and DEC.

Addition — adds two numbers

Subtraction — subtracts one number from another

Increment — increases a number by 1

Decrement — decreases a number by 1

Logical Operations

Logical Operations

* Logical operations in the ALU work with data at the bit level (changing or checking
individual bits) using logic gates such as AND, OR, XOR, and NOT. These operations are

actually built using logic gates inside the ALU hardware.

* Logical operations are not mathematical; instead, they are used to control or modify

individual bits inside a binary number.

Logical Operations

* They are important for tasks like checking certain bits, enabling or disabling features, setting

flags, or controlling hardware.

* These operations are done on binary data and are essential in low-level programming, computer

hardware control, security algorithms, and instruction execution.

Logical Operations

AND — Output is 1 only if both bits are 1. Used for masking (keeping selected bits).

OR — Output is 1 if any bit is 1. Used to set specific bits.

XOR (Exclusive OR) — Output is 1 if bits are different. Used for toggling bits or fast

comparisons.

NOT — Flips bits (1 becomes 0, 0 becomes 1). Used to invert data.

AND Operation

* Rule: Output 1s 1 only if both bits are 1

Use: Used for masking — keeping only selected bits and turning others off

—_—— | O
—_ O =
el K= K=l Ne>)

AND Operation

Truth table

Xx=10=00001010
y=11=00001011

X&y = 00001010

P OIP

AND Gate

Fig: AND operation

OR Operation

* Rule: Output is 1 if any bit is 1

* Use: Used to set specific bits (turn bits ON)

—_—— OO
—_ O = O
—_—t | = | = | ©

OR Operation Example

Truth table

Xx=20=00000101
y=10=00001010

x|y = 00001111

IJPD oIP

OR Gate

Fig: OR operation

XOR (Exclusive OR)

* Rule: Output is 1 only if bits are different

* Use: Toggle bits (flip them) or fast comparisons

—_—— OO
—_ O = O
S| ||

XOR (Exclusive OR)

Truth table

x=20=00000101
y=10=00001010

xhy = 00001111

D
e o/IP
7

XOR Gate

Fig: XOR operation

NOT Operation

* Rule: Flips bits — 1 becomes 0, 0 becomes 1

e Use: Invert data

XOR

OR
xy FIxly F

x
o1 oo|o oo0|o o0 o0fo0
1o o0o1|lo o0 1|1 o0 1|1
| 1 olo 1 0]1 1 01
— >0 1 11 1 1|1 1 1o
—

=) o) >

Uses of each logical gate:

*AND gate: Used for masking

Keeps only selected bits and hides the rest.

*OR gate: Used for setting bits

Turns specific bits ON (enables features or options).
*XOR gate: Used for toggling bits

Flips specific bits (used in switching and encryption).
*NOT gate: Used for bit inversion

Reverses all bits (used for creating negative or opposite values).

Shift Operations

Shift Operations

 Shift operations are basic bit manipulation operations performed inside the Arithmetic Logic

Unit (ALU). They move bits to the left or right and are used in arithmetic, logic manipulation,

and data processing.
Types include:
1. Logical Shift
2. Arithmetic Shift

3. Rotations

What are Shift Operations?

 Shift operations move the bits of a binary number left or right.
* Each shift moves bits by a specified number of positions.

* Bits that are shifted out are lost, and empty bit positions are filled based on the type of
shift.

Shift Operations

Shift operations are widely used in computer systems because they are:
* Fast (performed directly in hardware by the ALU)

» Efficient for:
e Multiplication and division by powers of 2.

* Bit extraction from binary data (Example: If we want to get only the last 3 bits of a number,

we can shift and mask it easily)

* Encoding and decoding operations, such as converting characters or signals into binary

form and back again. It's used in communication systems and data transmission.

* Cryptography and data compression (Example: XOR + bit shifting is used in simple

encryption techniques)

W

Types of Logical Shift / Compitess. camet do loge.

l cam AU /ng,.
I. Logical Shift Left (LSL) Thecekore, [am nol

/_.
_/
-

2. Logical Shift Right (LSR)

Logical Shift Left (LSL)

* Moves all bits to the left by n positions.
* Zeros are inserted from the right.

* Used for unsigned multiplication by 2.

Example: _ Each bit shifted left.
Binary: 0011 0101 (53)

LSL by 1 — 0110 1010 (106)

- A 0 1s inserted at the right.
- Number doubled.

Logical Shift Left (LSL)

e -

B LSB
1 0 1 0 1
Discarded < 4! 1 0 1 0

-«

k Logical Left Shift

Examples of Logical Shift Left (LSL)

Let's take an 8-bit unsigned binary number 01010011 (which 1s 83 in decimal). If we perform a
logical shift left:

* Before Shift: 01010011 (83 in decimal)

* After Logical Shift Left: 10100110 (166 in decimal)

Example:
0010 1100 (44 in decimal)

Shift Left by 1 — 0101 1000 (88) — multiplied by 2

Logical Shift Right (LSR)

* Moves all bits to the right by n positions.
* Zeros are inserted from the left.

* Used for unsigned division by 2.

Example:
Binary: 0011 0101 (53) - Right shift removes last bit.
LSR by 1 — 0001 1010 (26) - New 0 1s added to left.

- Number divided by 2.

Logical Shift Right (LSR)
f

LSB \

0 |1

MSB
1 0 1
0 1 0 1 % » Discarded

\ Logical Right Shift j

Example of Logical Shift Right (LSR)

Let's take the same 8-bit binary number 01010011 (83 in decimal). If we perform a logical
shift right:

* Before Shift: 01010011 (83 in decimal)

* After Logical Shift Right: 00101001 (41 in decimal)

Arithmetic Shift

* Arithmetic Shift is used for signed binary numbers (two’s complement). It shifts bits left or

right while preserving the sign of the number.
* Preserves the sign bit (MSB) during shifting.
* Used for fast multiplication or division by 2.

* Two types:
* Arithmetic Shift Left (ASL) — multiply by 2
* Arithmetic Shift Right (ASR) — divide by 2 and keep sign

* In most CPUs, ASL behaves the same as LSL (Logical Shift Left), so it may not appear as a

separate instruction.

Arithmetic Shift Left (ASL)

Shifts all bits one position to the left.

Sign bit may change — can cause overflow.

A 0 is inserted from the right.

Used for multiplying a signed number by 2.

Examples of Arithmetic Shift Left (ASL)

+22 1n binary (8-bit signed): 0001 0110 e Shift left — multiply by 2
ASLby 1 — 0010 T100 =+44 '+ For negative values, sign bit remains 1

until overflow happens
-10 1n binary (8-bit signed): 1111 0110

ASLby 1 — 1110 1100 =-20

* Some processors simply use LSL instead

of ASL

Arithmetic Shift Right (ASR)

* Shifts all bits one position to the right.
* Preserves the sign bit (MSB stays the same).
* Used for signed division by 2.

* Prevents incorrect sign changes.

Arithmetic Shift Right (ASR)

 Example 1 — Positive number:

ASR by 1 — 0001 0110 (+22)
0000 1011 (+11)

Before ASR:

* Example 2 — Negative number: 11110110
ASRby 1 — 1111 0110 (-10) fsign bit =1
1111 1011 (-5) Shift Right:

11111011

Tnew bit added = same as sign bit (1)

Rule for Arithmetic Shift Right (ASR)

* When shifting right:
 If the most significant bit (MSB) = 0 — we insert 0 from the left (number stays positive)

 [f the most significant bit (MSB) =1 — we insert 1 from the left (number stays negative)

Rotate Operations

* Rotate (circular shift) 1s a bit manipulation operation in the ALU where bits are shifted left or

right, and the bit that falls off from one end is reinserted at the other end.

Rotate Left (ROL)

e Bits are shifted left.

* The leftmost bit wraps around to the rightmost position.

 No bit is lost.

0 an)
= Z
7 6 5 4 3 2 10
0O|]0|JO0(2fO0|1]1]|1
[/ /) [/

y

ALt

1

O |[&—

Example of Rotate Left (ROL)

* Before: 1011 0010

* ROL by I:

* Step 1: shift left - 0110 010?

* Step 2: reinsert MSB — 0110 0101

e Result: 0110 0101

Example of Rotate Left (ROL)

* Binary: 1011 0010 * Leftmost bit (1) moves to the end.

* ROLby 1 - 01100101 * Circular shift.

Rotate Right (ROR)

* Bits are shifted right.

* The rightmost bit wraps around to the leftmost position.

~ | o LSB

6 5 4 3 2 1
010112101 |1

NNV

H(—/O ~N MSB
o/
o/
H/

e

Example of Rotate Right (ROR)

Before: 0110 1001

* ROR by 1I:

Step 1: shift right — 27011 0100
Step 2: reinsert LSB — 1011 0100
Result: 1011 0100

Binary: 1011 0010 Last bit moves to the beginning.
ROR by 1 — 0101 1001 * No data is lost.

Rotate Through Carry (RCL / RCR)

* Rotate Through Carry shifts bits including the Carry Flag (C) in the rotation. Used in
low-level assembly.

* Uses 9 bits in rotation (8 bits + Carry flag).

* Allows multi-word shifts and password hashing in low-level code. When shifting more
than 8 bits (like 16-bit or 32-bit numbers), rotate through carry helps connect multiple
registers together.

* It 1s used in password hashing / encryption

* Bit rotation 1s used 1n many security algorithms and cryptography.

* Rotating bits makes data difficult to guess or reverse, which increases security.

Rotate Left Through Carry (RCR)

5 4 3 2 1

O11(0]1(1 1
[777777
Y ¥ ¥ ¥ ¥ ¥ ¥ VY
Oj0j1212(0j1|12(2]1}J0

~ o LSB

Rotate Right Through Carry (RCL)

dST

dSIN

-

1

/ 6 5 4 3 2

oOfofOf12|0O0|1|1]|1]}f1

NNV AN

DPRRRRRRR

1{0(O0OJ0]2 (01|11

Registers

“Hey, can I borrow some cache?”

What is Register in Digital Electronics ?

* A register 1s a small and temporary storage unit inside a computer's (CPU). It plays a vital role
in holding the data required by the CPU for immediate processing and is made up of flip-flops.
It usually holds a limited amount of data ranging from 8 to 64 bits, depending on the processor

architecture.

* Registers act as intermediate storage for data during arithmetic logic and other processing

operations.

What is Register?

* A register is a tiny, fast storage memory within the central processing unit (CPU) or
the arithmetic logic unit (ALU) of a computer. Registers are utilized for a variety of functions
in handling and controlling instructions and data and play an important role in the operation of

a computer's CPU.

* In simple words, we can say that Register is very small, tiny storage unit which is temporary in

nature but fast storage memory of a computer.

Types of registers:

* Accumulator Register

* Program Counter (PC) Register

* General-Purpose Registers

* Instruction Register (IR)

* Memory Address Register (MAR)
* Memory Data Register (MDR)
 Stack Pointer (SP)

* Floating-Point Registers

Types of Registers

* Accumulator Register

The accumulator acts as a central point for arithmetic and logical operations within the CPU. It fetches data
from memory and stores intermediate results during calculations. Arithmetic operations such as addition,
subtraction, multiplication, and division often take place in the accumulator. The final result may be stored

in the accumulator or transferred to other registers or memory locations.

* Program Counter (PC) Register

The program counter 1s a special register that keeps track of the memory address of the next instruction to
be fetched and executed. As the CPU executes each instruction in sequence the program counter is updated
to indicate the next instruction's address in memory. This process continues until the program's execution is

complete.

Types of Registers (cont.)

* General-Purpose Registers

General-purpose registers are versatile because they can hold data and memory addresses. They
are used for various calculations and data manipulation tasks during program execution. General-

purpose registers are essential for performing arithmetic and logical operations on data stored in

the CPU.
* Instruction Register (IR)

The instruction register holds the currently fetched instruction from memory. It allows the CPU to

decode and execute the instruction based on its opcode and operands.

Types of Registers (cont.)

* Memory Address Register (MAR)

The memory address register stores the memory address of data or instructions to be accessed or
written in memory. It plays a crucial role in memory operations by indicating the location of the

data or instruction the CPU needs to access.

* Memory Data Register (MDR)

The Memory Data Register holds the actual data fetched from or written to memory. When the
CPU retrieves data from memory, it 1s temporarily stored in the MDR before being processed

further.

Types of Registers (cont.)

* Stack Pointer (SP)

The stack pointer 1s used in stack-based memory operations. It keeps track of the top of the stack.

which 1s a region of memory used for temporary storage of data and return addresses during

function calls.
* Floating-Point Registers

The Floating-point registers are specialized for handling floating-point numbers and performing
floating-point arithmetic operations. These registers can store and manipulate floating-point

numbers with higher precision.

Types of Registers (cont.)

* Index Register (IR)

The Index Register is a kind of useful instrument in the computer that tracks specific locations of
data. It 1s like a small helper that makes 1t easy for the computer to get to where memory 1s stored

quickly and process it.
* Memory Buffer Register (MBR)

The Memory Buffer Register can be viewed as a temporary store in the computer where data
takes time off when it is being transferred from one place to another by the CPU. This register can

be seen as some kind of traffic police man, ensuring smooth movements of information between

CPU and memory without any bumps.

Types of Registers (cont.)

* Data Register (DR)

The Data Register 1s an example of a fast storage place in the computer where information rests
while all these processes take place on the same machine. It's a location where transient amounts
of data are kept within the system for temporary usage like pit stops within then performing

calculations or tasks or others.

Advantages of Registers

Advantages of Registers

* Speed: The Registers offer fast access times due to their proximity to the CPU, enhancing

overall system performance.

* Data Processing Efficiency: They enable quick data manipulation, reducing the need to access

slower main memory frequently.

Disadvantages of Registers

* Limited Capacity: The Registers have a small size, restricting the amount of data they can

hold at a time.

* Cost: The Registers are made from flip-flops and require more hardware, contributing to the

overall cost of the processor.

Further Learning Resources

* COA Tutorials (Text): GeeksforGeeks — CPU Units Overview

* Interactive Learning (Video): CPU Architecture n

Short and easy video showing how ALU, CU, and registers work together.

https://www.geeksforgeeks.org/computer-science-fundamentals/central-processing-unit-cpu/
https://www.geeksforgeeks.org/computer-science-fundamentals/central-processing-unit-cpu/
https://www.geeksforgeeks.org/computer-science-fundamentals/central-processing-unit-cpu/
https://www.youtube.com/watch?v=IEYFlGLAhyo

References

* Fox, C. (2022). Computer architecture: From the Stone Age to the quantum age. No Starch

Press.

* Plantz, R. G. (2020). Introduction to computer organization: An under-the-hood look at

hardware and ARM64 assembly (ARM ed.). No Starch Press.

 Stallings, W. (2022). Computer Organization and Architecture: Designing for Performance
(11th ed.). Pearson.

* Boyd, C. (2020, January 1). How CPUs are designed and built: Fundamentals of computer
architecture. TechSpot. https://www.techspot.com/article/1821-how-cpus-are-designed-and-

built/

https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com

	Slide 1: Computer Organization & Architecture
	Slide 2: Lecture Outline
	Slide 3: Lecture Outcomes
	Slide 4: What is Inside the CPU?
	Slide 5: Control Unit
	Slide 6: Main Components of CPU
	Slide 7: Introduction to the Control Unit
	Slide 8: Why is the Control Unit Needed?
	Slide 9: Main Jobs of the Control Unit
	Slide 10: What are Control Signals?
	Slide 11: How Control Signals Work (Simple Example)
	Slide 12: How Does a CPU Control Unit work?
	Slide 13: Flag (Status Register)
	Slide 14
	Slide 15: Clock
	Slide 16: Arithmetic Logic Unit (ALU)
	Slide 17: Introduction to Arithmetic Logic Unit (ALU)
	Slide 18: Introduction to Arithmetic Logic Unit (cont.)
	Slide 19: What is the purpose of an arithmetic logic unit?
	Slide 20: What is the purpose of an arithmetic logic unit? (cont.)
	Slide 21: How does an arithmetic logic unit work?
	Slide 22
	Slide 23: Functions and Operations of ALU
	Slide 24: Arithmetic Operations
	Slide 25: Arithmetic Operations
	Slide 26: Arithmetic Operations (cont.)
	Slide 27: Logical Operations
	Slide 28: Logical Operations
	Slide 29: Logical Operations
	Slide 30: Logical Operations
	Slide 31: AND Operation
	Slide 32: AND Operation
	Slide 33: OR Operation
	Slide 34: OR Operation Example
	Slide 35: XOR (Exclusive OR)
	Slide 36: XOR (Exclusive OR)
	Slide 37: NOT Operation
	Slide 38
	Slide 39: Uses of each logical gate:
	Slide 40: Shift Operations
	Slide 41: Shift Operations
	Slide 42: What are Shift Operations?
	Slide 43: Shift Operations
	Slide 44: Types of Logical Shift
	Slide 45: Logical Shift Left (LSL)
	Slide 46: Logical Shift Left (LSL)
	Slide 47: Examples of Logical Shift Left (LSL)
	Slide 48: Logical Shift Right (LSR)
	Slide 49: Logical Shift Right (LSR)
	Slide 50: Example of Logical Shift Right (LSR)
	Slide 51: Arithmetic Shift
	Slide 52: Arithmetic Shift Left (ASL)
	Slide 53: Examples of Arithmetic Shift Left (ASL)
	Slide 54: Arithmetic Shift Right (ASR)
	Slide 55: Arithmetic Shift Right (ASR)
	Slide 56: Rule for Arithmetic Shift Right (ASR)
	Slide 57: Rotate Operations
	Slide 58: Rotate Left (ROL)
	Slide 59: Example of Rotate Left (ROL)
	Slide 60: Example of Rotate Left (ROL)
	Slide 61: Rotate Right (ROR)
	Slide 62: Example of Rotate Right (ROR)
	Slide 63: Rotate Through Carry (RCL / RCR)
	Slide 64: Rotate Left Through Carry (RCR)
	Slide 65: Rotate Right Through Carry (RCL)
	Slide 66: Registers
	Slide 67: What is Register in Digital Electronics ?
	Slide 68: What is Register?
	Slide 69: Types of registers:
	Slide 70: Types of Registers
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76: Advantages of Registers
	Slide 77: Disadvantages of Registers
	Slide 78: Further Learning Resources
	Slide 79: References
	Slide 80

