Computer Organization & Architecture

Cybersecurity Department
Course Code: CBS219

Lecture 5: Addressing Modes - Memory Hierarchy

Halal Abdulrahman Ahmed

Lecture Outline

* What are Addressing Modes?
* Why CPUs need them

* Components of Instruction

* Addressing Mode Types

* Effective Address calculation
* Memory Hierarchy

* Purpose of Memory Hierarchy
* Types of Memory Hierarchy

* Characteristics of Memory Hierarchy

—— =
@ Saddon..

I COMPUTER MEMORY |SSUE I

Lecture Outcomes

By the end of this lecture, students will be able to:

* Explain what addressing modes are and why CPUs use them.
* Identify and distinguish main types of addressing modes.

* Calculate the effective address in simple examples.

* Describe the purpose and structure of the memory hierarchy.

* Compare different memory levels in terms of speed, cost, and capacity.

Addressing Modes

Addressing modes are techniques used by the CPU to 1dentify the location of the operand(s)
needed for executing an instruction. They provide rules for interpreting the address field in an

instruction, helping the CPU fetch operands correctly.
* Opcode — Tells the CPU what operation to perform (e.g., ADD, MOV).

* Operands — The data or addresses on which the operation 1s performed.

Opcode Operand

Addressing Modes Types

Implicit (Implied) Addressing
* The 1nstruction does not mention the operand directly. The CPU knows what to use from the instruction

itself, usually a special register like the accumulator or the stack.

* It 1s used for special instructions or control commands like CLA, PUSH, and RET, where the operand is
automatically known from the instruction itself the instruction does not mention the data, the CPU

already knows where the data is.

* The operand is implied/automatic, usually in Accumulator or Stack.

Instruction

Data

Immediate Addressing

The operand is the part of the instruction itself. It 1s used when the value is known while writing

the program. Value 1s inside the instruction.

Example: MOV R1, #5 (moves the value 5 into register R1, where #5 1s the immediate value).

Immediate Addressing

Operand

Instruction

Direct Addressing

The 1nstruction contains the memory address of the operand. The CPU accesses the data directly

from that address. Instruction tells you exact memory location.

Example: LOAD R1, 1000 (loads data from memory address 1000 into register R1).

Direct Addressing

Instruction Memory

A

| » Operand

Indirect Addressing

The instruction contains the address of a register or memory location that holds the actual address

of the operand. The CPU first fetches this address, then accesses the operand. Instruction gives

you a location that contains another location.

Example: LOAD R1, (R2) (loads data from the memory location whose address 1s in register

R2). Indirect Addressing

Instruction Memory

A

>V

Operand

Vs

Register Addressing

The operand 1s located in a CPU register specified by the instruction. Data 1s already 1n a register.

Register Addressing

Step: Instruction

* The instruction specifies a register (R).

* The CPU takes operand directly from register R.

Example: MOV A, B operates between registers A and B.

— Operand

Register Set

Register Indirect Addressing

The register specified in the instruction contains the memory address of the operand. Register

contains memory address. Register Indirect Addressing
Step . Instruction
R
* The instruction specifies a register.
. . M
 This register holds the address (A). =
. " |
* The CPU fetches the operand from memory location A. > Operand

Example: MOV A, [R1] uses content of R1 as memory address. RERI=ErS

Displacement Addressing (Indexed, Base-Register, Relative)

The operand’s effective address is calculated by adding a constant value (displacement) to the

contents of one or more registers. Address = Register + offset (number) Dieplacamentaddressng

° Step: Instruction

R : Memory
* The instruction provides a base register (R) and an address part (A). ' L‘
* CPU adds the value of R and A to get the effective operand address. i (+)—s Operand
* Operand 1s fetched from the calculated address in memory.

Registers

Example: Used for arrays, loops, tables.

Displacement Addressing (Indexed, Base-Register, Relative)

Example: MOV RI1, 20(R2)

Effective Address = Register (Base) + offset Displacement Addressing
B Instruction

If R2 =1000 = M o

Address = 1000 + 20 = 1020 ' L‘

CPU gets data from memory[1020]. L _,@_, Operand

Registers

Stack Addressing

The operand is implicitly taken from the top of the stack, without being mentioned in the

instruction. Data 1s taken from top of stack (Last in, first out)
Step:
* Operation 1s performed using the value at the stack’s top (implied by instruction).

* No need for explicit operand field; CPU refers to stack pointer register by default.
Stack Addressing
 Example: POP and PUSH operations.

Instruction

Implicitly

Top of Stack Register

Memory Hierarchy

"My son's RAM just isn't satisfactory - can I
part exchange for an upgrade?"

Memory Hierarchy

* The memory hierarchy is a system design technique that organizes memory into multiple
levels (such as registers, cache, main memory, and secondary storage).
* Its main goal i1s to reduce memory access time and improve overall system performance by

storing frequently used data in faster memory levels.

Memory Hierarchy Design

CPU Registers
m Cache Memory (SRAMS)
b Main Memory (DRAMS)
_ﬂ X
m Opriestosk

Increase in cost per bit

Increase in Capacity & Access Time

a
-

The design is based on the principle of locality of reference, which means:
a. Temporal locality: recently used data is likely to be used again soon.

b. Spatial locality: data near the recently used location is also likely to be accessed.

* The higher levels of the hierarchy (like registers and cache) are smaller, faster, and more

expensive, while the lower levels (like hard disks) are larger, slower, and cheaper.

Purpose of Memory Hierarchy

* The Memory Hierarchy helps to use computer memory efficiently by organizing it into several levels

that differ in speed, size, and cost.

* Faster memories such as Cache and Main Memory (RAM) allow quick data access, but they are
smaller in capacity and more expensive. In contrast, slower memories like Hard Disks or Secondary

Storage provide larger capacity at a lower cost, but take longer time to access data.

* Since every type of memory operates at a different speed, the CPU cannot access all data at the same
rate. The memory hierarchy ensures that the most frequently used data stays in the fastest memory,

improving the overall performance and efficiency of the computer system.

Types of Memory Hierarchy

This Memory Hierarchy Design is divided into 2 main types:

* External Memory or Secondary Memory: Comprising of Magnetic Disk, Optical Disk, and
Magnetic Tape i.e. peripheral storage devices which are accessible by the processor via an I/O

Module.

* Internal Memory or Primary Memory: Comprising of Main Memory, Cache Memory

& CPU registers. This is directly accessible by the processor.

Types of Computer Computer
Memﬂry ME“’IQW
d N

Sequential Solid
Access State

SRAM —» RO Optical —» CO, DVD, etc.

v

DRLAR —» PRI hWlagnetic = Hard Disk Drive
= pabd and RO are called —» EFPRCIM solid State — Solid State Drive,
Primary Memory or Main —» EEPROM JSB hdemary

Memonry.. Stick, etc.

Memory Hierarchy Design

1. Registers

Registers are small, high-speed memory units located in the CPU. They are used to store the most

frequently used data and instructions. Registers have the fastest access time and the smallest

storage capacity, typically ranging from 16 to 64 bits.
2. Cache Memory

Cache memory is a small, fast memory unit located close to the CPU. It stores frequently used

data and instructions that have been recently accessed from the main memory. Cache memory is

designed to minimize the time it takes to access data by providing the CPU with quick access to

frequently used data.

3. Main Memory

* Main memory, also known as RAM (Random Access Memory), is the primary memory of a

computer system. It has a larger storage capacity than cache memory, but it is slower. Main

memory 1s used to store data and instructions that are currently in use by the CPU.
Types of Main Memory

* Static RAM: Static RAM stores the binary information in flip flops and information remains

valid until power is supplied. Static RAM has a faster access time and is used in implementing

cache memory.

 Dynamic RAM: It stores the binary information as a charge on the capacitor. It requires
refreshing circuitry to maintain the charge on the capacitors after a few milliseconds. It contains

more memory cells per unit area as compared to SRAM.

4. Secondary Storage

* Secondary storage, such as hard disk drives (HDD) and solid-state drives (SSD) , 1s a non-volatile
memory unit that has a larger storage capacity than main memory. It is used to store data and instructions

that are not currently in use by the CPU. Secondary storage has the slowest access time and is typically

the least expensive type of memory in the memory hierarchy.

5. Magnetic Disk

* Magnetic Disks are simply circular plates that are fabricated with either a metal or a plastic or a

magnetized material. The Magnetic disks work at a high speed inside the computer and these are

frequently used.

6. Magnetic Tape

* Magnetic Tape is simply a magnetic recording device that is covered with a plastic film. Magnetic Tape is

generally used for the backup of data. In the case of a magnetic tape, the access time for a computer is a

little slower and therefore, it requires some amount of time for accessing the strip.

Characteristics of Memory Hierarchy

* Capacity: It 1s the global volume of information the memory can store. As we move from top

to bottom 1in the Hierarchy, the capacity increases.

* Access Time: It is the time interval between the read/write request and the availability of the

data. As we move from top to bottom in the Hierarchy, the access time increases.

* Performance: The Memory Hierarch design ensures that frequently accessed data is stored in

faster memory to improve system performance.

* Cost Per Bit: As we move from bottom to top in the Hierarchy, the cost per bit increases 1.e.

Internal Memory i1s costlier than External Memory.

System-Supported Memory Standards

According to the memory Hierarchy, the system-supported memory standards are defined below:

Level 1 2 3 4
i Main Memor Secondary
Name Register Cache Y Memory
Size <1 KB less than 16 MB <16GB >100 GB
Impl tati Multi-port On-chip/SRAM RRAMSCapa ttor i
mplementation ulti-ports n-chip/ memory) Magnetic
Access Time 0.25ns to 0.5ns 0.5 to 25ns 80 ns to 250ns 50 lakh ns
Bandwidth 29000 ;031 Lk 5000 to 15000 1000 to 5000 20 to 150
) Operating Operating
Manage by Compiler Hardware System System
Backing from Main from Secondary .
From cache fromie

Mechanism Memory Memory

Advantages of Memory Hierarchy

Performance: Frequently used data 1s stored in faster memory (like cache), reducing access

time and improving overall system performance.

* Cost Efficiency: By combining small, fast memory (like registers and cache) with larger,
slower memory (like RAM and HDD), the system achieves a balance between cost and

performance. It saves the consumer's price and time.

* Optimized Resource Utilization: Combines the benefits of small, fast memory and large, cost-

effective storage to maximize system performance.

» Efficient Data Management: Frequently accessed data 1s kept closer to the CPU, while less

frequently used data 1s stored in larger, slower memory, ensuring efficient data handling.

Disadvantages of Memory Hierarchy

* Complex Design: Managing and coordinating data across different levels of the hierarchy adds

complexity to the system's design and operation.

* Cost: Faster memory components like registers and cache are expensive, limiting their size and

increasing the overall cost of the system.

* Latency: Accessing data stored in slower memory (like secondary or tertiary storage) increases

the latency and reduces system performance.

* Maintenance Overhead: Managing and maintaining different types of memory adds overhead

in terms of hardware and software.

References

* Fox, C. (2022). Computer architecture: From the Stone Age to the quantum age. No Starch

Press.

* Plantz, R. G. (2020). Introduction to computer organization: An under-the-hood look at

hardware and ARM64 assembly (ARM ed.). No Starch Press.

 Stallings, W. (2022). Computer Organization and Architecture: Designing for Performance
(11th ed.). Pearson.

* Boyd, C. (2020, January 1). How CPUs are designed and built: Fundamentals of computer
architecture. TechSpot. https://www.techspot.com/article/1821-how-cpus-are-designed-and-

built/

https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/?utm_source=chatgpt.com

	Slide 1: Computer Organization & Architecture
	Slide 2: Lecture Outline
	Slide 3: Lecture Outcomes
	Slide 4: Addressing Modes
	Slide 5: Addressing Modes Types
	Slide 6: Implicit (Implied) Addressing
	Slide 7: Immediate Addressing
	Slide 8: Direct Addressing
	Slide 9: Indirect Addressing
	Slide 10: Register Addressing
	Slide 11: Register Indirect Addressing
	Slide 12: Displacement Addressing (Indexed, Base-Register, Relative)
	Slide 13: Displacement Addressing (Indexed, Base-Register, Relative)
	Slide 14: Stack Addressing
	Slide 15: Memory Hierarchy
	Slide 16: Memory Hierarchy
	Slide 17
	Slide 18: Purpose of Memory Hierarchy
	Slide 19: Types of Memory Hierarchy
	Slide 20
	Slide 21: Memory Hierarchy Design
	Slide 22
	Slide 23
	Slide 24: Characteristics of Memory Hierarchy
	Slide 25: System-Supported Memory Standards
	Slide 26: Advantages of Memory Hierarchy
	Slide 27: Disadvantages of Memory Hierarchy
	Slide 28: References
	Slide 29

