v a
- <
' 2008

Database Fundamentals

Cybersecurity Department
Course Code: CBS 213

Practical Lecture 3: MySQL Data Types and Constraints

Halal Abdulrahman Ahmed

Lecture Outlines

* Introduction to MySQL data types

3 <<

* String, numeric, and date/time data types
* Choosing the right data type for columns
* Introduction to constraints (rules for valid data)

. Applying PRIMARY KEY, FOREIGN KEY, NOT NULL, UNIQUE, CHECK, and
DEFAULT

* Practice tasks and lab exercises

Learning Outcomes

By the end of this lab, students will be able to:
 Identify and use appropriate MySQL data types.
* Apply constraints to ensure data integrity.

* Create and modify tables using SQL commands.

* Validate and test constraints through insert and update operations.

MySQL Data Types

MySQL Data Types

* Each column in a database table is required to have a name and a data type.

* MySQL uses data types to optimize storage, enforce consistency, and ensure data integrity.

* Each column in a MySQL table is assigned a specific data type.
In MySQL there are three main data types:

1. String Data Types

2. Numeric Data Types

3. Date and Time Data Types

Date and
Time
DATETIME CHAR
) [L, i
TIMESTAMP BINARY

DATE

VARCHAR

TIME

VARBINARY

YEAR

BLOB

TEXT

String Data Types:

1. CHAR(n):

* Fixed-length string. It is efficient for storing data that is always the same length.

* Example: country codes (e.g., 'US’)

CREATE TABLE test_char (
country_code CHAR(3)
);
INSERT INTO test_char VALUES ('USA'), ('UK'), ('IRQ');
SELECT *x FROM test_char;

String Data Types:

2. VARCHAR(n), (variable character):
* Variable-length string. It 1s efficient for most text data

* Example: names, email addresses.

—— VARCHAR(n): variable-length string, best for names
CREATE TABLE test_varchar (
name VARCHAR(50),
email VARCHAR()
);
INSERT INTO test_varchar VALUES (,
SELECT * FROM test_varchar;

and

general text

3. TEXT:
* Used for large text fields. Cannot be indexed or used in GROUP BY or ORDER BY clauses easily.

* Types: TINYTEXT, TEXT, MEDIUMTEXT, LONGTEXT

i Mo e B
- ~

Attribute .- -~ 7" T T T =< e oo
" descrlptlon\TEXI' rfm"'fY ___________________________

SELECT * FROM test text: “sel L

~ o
-~
-~
-
-—
~_——_ —’—
e e -
T e e e e e e e o = = =

Types of TEXT

Type Maximum Length Used For

TINYTEXT 255 characters Short notes, brief comments

TEXT 65,535 characters (~64 KB) Descriptions, messages
MEDIUMTEXT 16,777,215 characters (~16 MB) Articles, blog posts, long reports
LONGTEXT 4,294,967,295 characters (~4 GB) | Books, research papers, large documents

4. ENUM:
* Accepts one value from a predefined list.
* Example: ENUM('low', 'medium’, 'high')

* Used for storing controlled options like status or categories.

CREATE TABLE test_enum (
level ENUM('Low', 'Medium', 'High')
);
INSERT INTO test_enum VALUES ('Low'), ('High');
SELECT %x FROM test_enum;

Maximum Length

CHAR 255 characters
VARCHAR 65,535 characters
TINYTEXT 255 characters

TEXT 65,535 characters
MEDIUMTEXT 16,777,215 characters
LONGTEXT 4,294,967,295 characters
ENUM 65,535 possible values

Security Note:
 ENUM ensures valid input. Helps prevent injection via invalid values.

* Avoid TEXT for sensitive user input unless properly sanitized and validated.

Integer Types (Exact Value):

1. INT INTEGER):
e Stores whole numbers.

* Example: age, number of items.

Range: -2,147,483,648 to 2,147,483,647. Use UNSIGNED if only positive values are allowed.

CREATE TABLE test_int (
id INT,
quantity INT
);
INSERT INTO test_int VALUES (1, 10), (2, 25), (3, -5);
SELECT * FROM test_int;

Integer Types (Exact Value):

2. BIGINT:
* Used for very large integers.

* Example: storing large user IDs or counters.

* Range: -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

CREATE TABLE test_bigint (
population BIGINT
);
INSERT INTO test_bigint VALUES (7500000000), (12000000000);
SELECT x FROM test_bigint;

3. DECIMAL (M, D):
» Used for storing exact numeric values.

* Example: prices, financial data (e.g., DECIMAL(10,2)).

* Avoids rounding errors found in floating point types.

CREATE TABLE test_decimal (
price DECIMAL(S,?2)
);
INSERT INTO test_decimal VALUES (12.50), (199.99);
SELECT % FROM test_decimal;

4. FLOAT/DOUBLE:
» Used for approximate values.

* Example: scientific data, temperature, or measurements.

CREATE TABLE test_float (
temperature FLOAT,
distance DOUBLE
);
INSERT INTO test_float VALUES (36.6, 12500.45), (25.4, 8750.22):
SELECT * FROM test_float;

Data Type Number of Digits (Precision) | Notes
FLOAT About 67 digits total May round long numbers
DOUBLE About 15-16 digits total More accurate

Security Tip:
* Use DECIMAL for financial data to maintain precision.

* Avoid using FLOAT or DOUBLE for IDs or sensitive calculations to prevent rounding attacks.

Date and Time Data Types:

1. DATE:
» Stores calendar dates in format: YYY Y-MM-DD

» Use case: birthdates, deadlines.

CREATE TABLE test_date (
birth_date DATE
) ;
INSERT INTO test_date VALUES ('2000-05-14'), ('1998-11-21");
SELECT x FROM test_date;

Date and Time Data Types:

2. TIME:
* Stores time values in format: HH:MM:SS

 Use case: event start/end times.

CREATE TABLE test_time (
start_time TIME,
end _time TIME
)i
INSERT INTO test_time VALUES ('09:00:00', '11:30:00'");
SELECT % FROM test time;

3. DATETIME:
» Stores both date and time. Format: YYYY-MM-DD HH:MM:SS

» Use case: user login timestamps, transactions.

CREATE TABLE test_datetime (
login_time DATETIME
)i
INSERT INTO test_datetime VALUES ('2025-10-16 14:30:00');
SELECT x FROM test datetime;

4. TIMESTAMP:
e Similar to DATETIME but stored in UTC.

* Auto-updates on row update if configured.

CREATE TABLE test_timestamp (
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
);
INSERT INTO test_timestamp VALUES ();
SELECT * FROM test_timestamp;

Security/Operational Tip:
* Prefer TIMESTAMP for logs and audits (consistent timezone).

* DATETIME is preferred for application-defined time (local time).

Common Data Types

Data Type Use Case Format/Example Notes

INT User ID, age 101 Basic whole number
VARCHAR(255) Emails, names 'alice@uni.edu’ Flexible text

DATE Birthdays '2003-05-12" Stores date only
DATETIME Audit log '2025-10-16 09:45:00' Application time
DECIMAL(10,2) Money 1000.50 Accurate, no rounding
ENUM('open','closed"') Status fields 'open’ Safe list enforcement

Why Choosing the Right Data Type Matters

* Performance: Efficient data types reduce memory and improve query speed.

» Security: Proper types prevent unexpected input (e.g., text in a number field). Helps reduce

SQL injection risks.

* Storage: Smaller, specific types reduce database size and increase cache efficien

Best Practices

* Always specify length (e.g., VARCHAR(100), DECIMAL(10,2)).
* Use ENUM or CHECK constraints to enforce valid inputs.

* Prefer CHAR for fixed-length codes (e.g., country codes).

* Avoid TEXT/BLOB for searchable fields.

 Validate and sanitize all user inputs even i1f you use safe data types.
* Use TIMESTAMP for consistent, timezone-safe logging.

* Normalize your schema to reduce redundancy and errors.

* Understand the tradeoffs between JSON (flexibility) and structured columns (reliability).

Practice Task 1

* Task:
Create a table called student_info with these columns:

* id — INT

 name — VARCHAR(50)
 age — TINYINT

* gpa — DECIMAL(3,2)

* birth_date — DATE

* email - VARCHAR(100)

1
Step 1

CREATE TABLE student_info (
1d INT,

Step 2
name VARCHAR(50), :
age TINYINT, DESCRIBE student_info;

gpa DECIMAL(3,2),
birth_date DATE,
email VARCHAR(100)

MySQL Constraints

What Are Constraints?

* Constraints = Rules that restrict what data can go into a column.
* They protect the accuracy and reliability of data.

* Common types:

« PRIMARY KEY
FOREIGN KEY
NOT NULL
UNIQUE
CHECK
DEFAULT

PRIMARY KEY

* Uniquely identifies each record in a table.
* Automatically NOT NULL and indexed.

* Each table should have one primary key.

CREATE TABLE student (
1d INT PRIMARY KEY,
name VARCHAR(50)

) ;

FOREIGN KEY

* Links data between two tables.
* Ensures the value exists in the parent table.

CREATE TABLE department (
dept_id INT PRIMARY KEY,
dept_name VARCHAR(50)

);

CREATE TABLE employee (
emp_id INT PRIMARY KEY,
emp_name VARCHAR(50),
dept_id INT,
FOREIGN KEY (dept_id) REFERENCES department(dept_id)

NOT NULL, UNIQUE, CHECK, DEFAULT

« NOT NULL
Value must be provided:

name VARCHAR(50) NOT NULL

 UNIQUE
Prevents duplicates:

email VARCHAR(100) UNIQUE

CHECK
Ensures valid range or rule:

age INT CHECK (age BETWEEN 18 AND 30)

DEFAULT
Sets automatic value:

shift VARCHAR(10) DEFAULT 'Morning’

Full Example: All Constraints

CREATE TABLE student (
1d INT AUTO_INCREMENT PRIMARY KEY,
name VARCHAR(50) NOT NULL,
email VARCHAR(100) UNIQUE,
age INT CHECK (age >= 18),
major VARCHAR(30) DEFAULT 'IT',
dept_1id INT,
FOREIGN KEY (dept_id) REFERENCES department(dept_id)

Homework 1

Create a table courses:

* course id — INT PRIMARY KEY AUTO INCREMENT

title — VARCHAR(50) NOT NULL

credits — INT CHECK (credits BETWEEN 1 AND 5)

dept 1id — INT FOREIGN KEY — department(dept id)

Insert some valid and invalid rows to see the constraints in action.

Homework 2

Create database university lab:

Add tables: student, course, instructor.

Use all major constraints.

Insert and test data.

References

* Smirnova, S., & Tezuyal, A. (2022). MySQOL cookbook: Solutions for database developers and
administrators (4th ed.). O’Reilly Media.
 Silva, B. (2021). MySQL crash course: A hands-on introduction to database development. No

Starch Press.

	Slide 1: Database Fundamentals
	Slide 2: Lecture Outlines
	Slide 3: Learning Outcomes
	Slide 4: MySQL Data Types
	Slide 5: MySQL Data Types
	Slide 6: String Data Types:
	Slide 7: String Data Types:
	Slide 8
	Slide 9: Types of TEXT
	Slide 10
	Slide 11: Maximum Length
	Slide 12
	Slide 13: Integer Types (Exact Value):
	Slide 14: Integer Types (Exact Value):
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Date and Time Data Types:
	Slide 20: Date and Time Data Types:
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Common Data Types
	Slide 25: Why Choosing the Right Data Type Matters
	Slide 26: Best Practices
	Slide 27: Practice Task 1
	Slide 28
	Slide 29: MySQL Constraints
	Slide 30: What Are Constraints?
	Slide 31: PRIMARY KEY
	Slide 32: FOREIGN KEY
	Slide 33: NOT NULL, UNIQUE, CHECK, DEFAULT
	Slide 34: Full Example: All Constraints
	Slide 35: Homework 1
	Slide 36: Homework 2
	Slide 37: References
	Slide 38

