© a
- <
' 2008

Database Fundamentals

Cybersecurity Department
Course Code: CBS 213

Practical Lecture 4: Implementing Relationships in MySQL

Halal Abdulrahman Ahmed

Outlines

* Introduction to database relationships

* Primary key vs. foreign key refresher

* One-to-One relationship (example + SQL)

4 << <

* One-to-Many relationship (example + SQL)

* Many-to-Many relationship & junction table (example + SQL)

* Self-Referencing relationship (example + SQL)

* Hands-on practice in MySQL

Learning Outcomes

By the end of this lecture, students will be able to:

* Define database relationships and explain why they are used.

Identify One-to-One, One-to-Many, Many-to-Many, and Self-Referencing relationships.

Use primary keys and foreign keys to connect tables in MySQL.

Create SQL tables that implement different types of relationships.

Build a junction table with a composite key for many-to-many relationships.

Apply SQL queries to test and validate table relationships.

What is a Relationship in Databases?

* A relationship connects data in two or more tables using keys.
* Relationships prevent data duplication and maintain logical links.

* They rely on foreign keys that reference a primary key in another table.

Types of Relationships

Relationship in SQL

One-to- Many-to- Many- self-
One-to-One Many Many to-One referencing

1. One-to-One Relationship

* Each record in Table A is associated with one and only one record in Table B, and vice versa.
» Setup: Include a foreign key in one of the tables that references the primary key of the other table.

» For example: Tables users (A) and user profiles (B), where each user has a single corresponding profile.

TABLE A TABLE B
user_id username profile_id _ profile_data
1 ramesh p01 1 XyZ
riya p02 2 abc
3 akhil p03 3 gfg

- foreign key

primary key

”——5\
7 ~

’— L \

\C REATE TABLE ‘users (TTem---o___ .| Creates a new table in the database

_—
‘-————

user_1d INT PRIMARY KEY,
username VARCHAR(50)

);

Constraint that prevents duplicate values

CREATE TABLE user_profiles (,’
profile_id IN'I; _P_RIMARY KEY, T
user_id INT(UNIQUE r
profile_data vARCHAR(ZSS)

FOREIGN KEY (user_id) REFERENCES users(user_id)

-
-
-
_—-——
—-— -

2. One-to-Many Relationship

e Each record in Table A (Departments) can be associated with multiple records in Table B (Employees), but each

record in Table B 1s associated with only one record in Table A.

* Setup: Include a foreign key in the "many" side table (Table B) that references the primary key of the "one" side
table (Table A).

* For example: Tables departments and employees, where each department can have multiple employees, but each

employee belongs to one department. Departments Employees

department_id department_name employee_id employee_name _

di technical e01 Ramesh d3

d2 accounts e02 Riya di

d3 pr e03 Meha d2

d4 product management e04 Mayank di

e05 Kritila d4

e06 Anuj d4

e07 Sam di

e08 Gurpreet d2

- foreign key

primary key

CREATE TABLE departments (
department_id INT PRIMARY KEY,
department_name VARCHAR(50)

) ;

CREATE TABLE employees (
Column in departments table, it must

employee_id INT PRIMARY KEY, match the department ID there
employee_name VARCHAR(50), s
department_id INT, ™

___ e ettt

FOREIGN KEY (department 1d) REFERENCES'departmentsvdepartment 1d)

This column in the employees table The table we are connecting to

3. Many-to-Many Relationship

* Each record in Table A (Students) can be associated with multiple records in Table B (Courses), and vice versa.

» Setup: Create an intermediate table (also known as a junction or linking table) that contains foreign keys referencing

both related tables. Linking table is a table that contains two foreign keys, each one coming from a different table,

to link them together.

* For example: Tables students and courses, where each student can enroll in multiple courses, and each course can

have multiple students.

STUDENTS COURSES STUDENT_COURSES
student_id student_name course_id course_name student_id course_id
1 Alice 101 Mathematics 1 101
2 Bob 102 History 1 102
Charlie 103 Computer Science 2 102
- foreign key
primary key

both primary and foreign key

e T

STUDENTS COURSES /" STUDENT COURSES .
student_id student_name course_id course_name / student_id course_id
1 Alice 101 Mathematics /' 1 101\
2 Bob 102 History ,’l 1 102 “.
3 Charlie 103 Computer Science !‘ 2 102 ,:
\ H
- foreign key \\\
primary key \\
both primary and foreign key \\\ //
~~~~~~__r_____,,¢

—”’
-
_________
-
-~
-
-

Together they form a Composite Key



CREATE TABLE students (
Student_ideNT PRIMARY KEY,

);

student_name VARCHAR(50)

\

CREATE TABLE courses (
course_id INT PRIMARY KEY,

);

Qsite key

course_name VARCHAR(50)

student_ 1d INT,
course_ld INT,

Column names

v

Linking table

Foreign Keys




Try this code

CREATE TABLE students (
student_id INT PRIMARY KEY,
student_name VARCHAR(50)

);

CREATE TABLE courses
course_id INT PRIMARY KEY,
course_name VARCHAR(50)

);

CREATE TABLE student_courses (
student_id INT,
course_id INT,
PRIMARY KEY (student_id, course_id),
FOREIGN KEY (student_id) REFERENCES students(student_id),
FOREIGN KEY (course_id) REFERENCES courses(course_id)



4. Many-to-One Relationship

* Multiple records in table B (Teachers) can be associated with one record in table A (Courses).
* Setup: Crate a Foreign key in "Many Table" that references to Primary Key i "One Table".

* Example: Table Teachers and Courses, many courses can be taught by single teacher.

Teachers Courses
teacher_id first_name last_name course_id  course_name teacher_id
101 Ben Johnson 201 Math 101 101
102 Harish Patel 202 Computer Science 102
203 Physics Lab 101
Primary Key
Foreign Key




CREATE TABLE Teachers (
teacher_id INT PRIMARY KEY,
first_name VARCHAR(255),
last_name VARCHAR(255)

);

CREATE TABLE Courses (
course_1id INT PRIMARY KEY,
course_name VARCHAR(255),
teacher_1id INT,

FOREIGN KEY (teacher_id) REFERENCES Teachers(teacher_id)



5. Self-Referencing Relationship

* A table has a foreign key that references its primary key. A Self-Referencing Relationship (also called Self-Join or

Recursive Relationship) is when a table has a relationship with itself.
* Setup: Include a foreign key column in the same table that references its primary key.

* For example : A table employees with a column manager id referencing the same table's employee id. It shows one

table (employees) where one employee can be another employee’s manager.

employees
employee_id employee name _
1 Alice NULL
Bob 1
3 Charlie 1

D foreign key

primary key



CREATE TABLE employees (
employee_1id INT PRIMARY KEY,
employee_name VARCHAR(50),
manager_id INT,
FOREIGN KEY (manager_id) REFERENCES employees(employee_id)



References

Simmons, S., & Teyzal, A. (2022). MySQOL cookbook: Solutions for database developers
and administrators (4th ed.). O’Reilly Media.

GeeksforGeeks. (n.d.). Relationships in SOL.: One-to-one, one-to-many, many-to-many .

Retrieved November 2, 2025, from

https://www.geeksforgeeks.org/sql/relationships-in-sgl-one-to-one-one-to-many-many-to-

many/


https://www.geeksforgeeks.org/sql/relationships-in-sql-one-to-one-one-to-many-many-to-many/
https://www.geeksforgeeks.org/sql/relationships-in-sql-one-to-one-one-to-many-many-to-many/
https://www.geeksforgeeks.org/sql/relationships-in-sql-one-to-one-one-to-many-many-to-many/
https://www.geeksforgeeks.org/sql/relationships-in-sql-one-to-one-one-to-many-many-to-many/
https://www.geeksforgeeks.org/sql/relationships-in-sql-one-to-one-one-to-many-many-to-many/
https://www.geeksforgeeks.org/sql/relationships-in-sql-one-to-one-one-to-many-many-to-many/
https://www.geeksforgeeks.org/sql/relationships-in-sql-one-to-one-one-to-many-many-to-many/
https://www.geeksforgeeks.org/sql/relationships-in-sql-one-to-one-one-to-many-many-to-many/
https://www.geeksforgeeks.org/sql/relationships-in-sql-one-to-one-one-to-many-many-to-many/
https://www.geeksforgeeks.org/sql/relationships-in-sql-one-to-one-one-to-many-many-to-many/
https://www.geeksforgeeks.org/sql/relationships-in-sql-one-to-one-one-to-many-many-to-many/
https://www.geeksforgeeks.org/sql/relationships-in-sql-one-to-one-one-to-many-many-to-many/
https://www.geeksforgeeks.org/sql/relationships-in-sql-one-to-one-one-to-many-many-to-many/
https://www.geeksforgeeks.org/sql/relationships-in-sql-one-to-one-one-to-many-many-to-many/
https://www.geeksforgeeks.org/sql/relationships-in-sql-one-to-one-one-to-many-many-to-many/
https://www.geeksforgeeks.org/sql/relationships-in-sql-one-to-one-one-to-many-many-to-many/
https://www.geeksforgeeks.org/sql/relationships-in-sql-one-to-one-one-to-many-many-to-many/
https://www.geeksforgeeks.org/sql/relationships-in-sql-one-to-one-one-to-many-many-to-many/
https://www.geeksforgeeks.org/sql/relationships-in-sql-one-to-one-one-to-many-many-to-many/
https://www.geeksforgeeks.org/sql/relationships-in-sql-one-to-one-one-to-many-many-to-many/
https://www.geeksforgeeks.org/sql/relationships-in-sql-one-to-one-one-to-many-many-to-many/
https://www.geeksforgeeks.org/sql/relationships-in-sql-one-to-one-one-to-many-many-to-many/
https://www.geeksforgeeks.org/sql/relationships-in-sql-one-to-one-one-to-many-many-to-many/




	Slide 1: Database Fundamentals
	Slide 2: Outlines
	Slide 3: Learning Outcomes
	Slide 4: What is a Relationship in Databases?
	Slide 5: Types of Relationships
	Slide 6: 1. One-to-One Relationship  
	Slide 7
	Slide 8: 2. One-to-Many Relationship
	Slide 9
	Slide 10: 3. Many-to-Many Relationship 
	Slide 11
	Slide 12
	Slide 13: Try this code
	Slide 14: 4. Many-to-One Relationship 
	Slide 15
	Slide 16: 5. Self-Referencing Relationship 
	Slide 17
	Slide 18: References 
	Slide 19

