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Title & Overview

* This lecture focuses on how modern emerging technologies—Artificial
Intelligence (Al), the Internet of Things (1oT), and Cloud Computing—are
reshaping cybersecurity.

We will explore both defensive and offensive applications, discuss real-
world case studies, and analyze the ethical, legal, and governance
implications.

Emphasize that technological convergence creates both opportunities for
innovation and challenges for digital defense.
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Learning Objectives

* Bullets:

* Understand Al, loT, and Cloud integration in security systems
* Identify new vulnerabilities and risk domains

* Apply frameworks for secure desigh and governance

By the end of this lecture, participants should be able to:

* Explain how Al automates and enhances cyber defense.

* Evaluate risks introduced by loT’s massive connectivity.

* Analyze cloud-based security models and shared responsibilities.

* Design practical controls for hybrid Al-loT-cloud environments.
These objectives align with cybersecurity governance, digital resilience, and sustainable
technology use.
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Introduction: Emerging Technologies Landscape

‘I I Bullets: ‘ Definitions: Al, loT, Cloud Computing GE Technology convergence

Al: Systems capable of learning,
. Lecture Notes: . .
Impact on cybersecurity ecosystems . Py reasoning, and adapting (e.g., ML,
Define: P-4 bL)

Cloud Computing: On-demand
scalable resources enabling flexible

((‘ ’)) loT: A network of interconnected 'o infrastructure.
| sensors and devices generating vast g} Convergence leads to new attack
data streams. surfaces—Al models hosted in the

cloud, loT devices feeding sensitive
data to Al-based analvtics.
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Currently available emerged technologies

» Artificial Intelligence
» Robotics

»loT

»5-G

» Biometrics

» 3D printing

» Cloud Computing

> Bi o Data Source: internet .
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Al in Cybersecurity — Overview

Bullets:
Al as a defender and attacker

Uses: Detection, response, and
prediction Al

Applications: SOC automation,
malware classification

Al supports anomaly detection, user
behavior analytics (UEBA), and threat

hunting. "o
However, adversaries exploit Al for o g o o 1 1
Ny *

automated phishing, malware
generation, and Al-powered social
engineering. Artificial For that the basic  With Need different
. . i i | is Machi Combination of f
Al is dual-edged: it strengthens e || (el | Moomne [

which later joins input sensors Al

defenses but can also magnify threats. il |l iy

Human .
Learning(DL)
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« Combination of technologies and process to protect data
and programs from unauthorized access

= Different bodies such as government, military, corporate,
financial...stores, process unprecedented data on

lmportance computers, for safeguarding such Data

= Network security
* Application security

* Endpoint security
(SLUEUERTEERY , pata security
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Machine Learning vs Deep Learning

Bullets:
ML: Supervised, Unsupervised, Reinforcement

DL: Neural networks for feature extraction

Application comparison
ML models rely on structured features (e.g., file size, IP reputation), while DL
automatically extracts features from raw data (e.g., packet captures, logs).
Example: ML may classify phishing URLs, while DL models (CNN/RNN) detect
unseen threats.
Reinforcement learning simulates adaptive attacker—defender behavior.
Key tradeoff: Interpretability vs accuracy.
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Al-based Threat Intelligence & Detection

I Il SIEM + ML correlation UEBA and anomaly detection

Modern Security Operations Centers (SOCs) integrate
machine learning models into SIEM platforms to prioritize
alerts.

Al correlates massive log data, identifying anomalies
humans might miss.

Example: Microsoft Defender or Splunk use ML pipelines to
detect insider anomalies.

Challenges include data drift, false positives, and model
retraining.

Automated threat scoring
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Example Problem:

A SOC receives 1 million daily log entries. An ML-based anomaly detector flags a subset as
“abnormal.” After validation, analysts discover 40 of 50 alerts were true attacks.
Question:

What is the model’s precision, and how can it be improved?

Solution:

Precision = True Positives / (True Positives + False Positives)

=40 /50 = 0.8 (80%).

To improve:

*Use ensemble models for balanced learning.

*Periodically retrain with updated threat datasets.

*Apply feature selection to reduce noise.
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Adversarial ML & Evasion Techniques

e Bullets:

* Evasion and poisoning
 Model inversion and theft
* Countermeasures

Attackers use adversarial samples—inputs slightly modified to mislead
models.

Example: Changing few bytes in malware may evade a classifier.
Poisoning attacks corrupt training data, degrading model reliability.
Defense: adversarial training, differential privacy, explainable Al, and
layered verification.
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Example Scenario:

An antivirus ML model classifies malware using byte sequences.

An attacker modifies the file slightly without changing its behavior, causing the model to
misclassify it as benign.

Problem:

Explain the type of adversarial attack and one mitigation technique.

Solution:

*Attack Type: Evasion Attack (adversarial example).

*Mitigation: Use adversarial training, where the model is retrained with crafted adversarial
samples to improve robustness.

Additional Example:

If 1% of training data is poisoned (contains mislabeled malware as safe), model accuracy can
drop from 95% - 70%.

Solution: Data provenance tracking and outlier detection during preprocessing.



Tishk International University
Faculty of Applied Science
Cybersecurity Department

Al in Malware & Phishing

e Bullets:

* Al-generated phishing emails
 ML-driven malware mutation

* Al for automated reconnaissance

* Lecture Notes:
Al can simulate human writing to craft convincing spear-phishing
messages (e.g., GPT-based attacks).
Malware families now use ML polymorphism—they modify behavior
dynamically.
Countermeasures: sandboxing, real-time heuristic monitoring, and
behavioral ML filters.
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loT Overview & Architecture

e Bullets:
 Devices, Gateways, Cloud E'
* Protocols: MQTT, CoAP, HTTP \

* Lifecycle & constraints N
loT architecture: \ ‘

* Perception layer: sensors & devices

* Network layer: connectivity (Wi-Fi, LTE, YN

Zigbee)
* Application layer: cloud-based analytics O%
®

loT security is limited by weak encryption,
long lifecycles, and vendor fragmentation.

Using all different sensors we can achieve [0T
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loT Attack Surfaces & Vulnerabilities

* Bullets:

e Default passwords

* Firmware vulnerabilities

e Lateral network movement

* Lecture Notes:
Common weaknesses:

* Unchanged factory credentials (Mirai botnet)
* Insecure update mechanisms

* Flat networks allowing pivot attacks
Highlight: loT is often an entry point for deeper infrastructure breaches.
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Example Problem:

An loT security camera is connected to a public Wi-Fi network with
default credentials. Within hours, it becomes part of a DDoS botnet.
Question:

Identify the attack vector and preventive control.

Solution:

*Attack Vector: Weak authentication (default credentials) and
exposed telnet/SSH ports.

*Control: Change default passwords, use firmware-level encryption,
and isolate loT subnet (VLAN).
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Case Studies: Real-World loT Attacks

e Bullets:

* Mirai Botnet (2016)
 Smart Camera Leaks
* Industrial IoT attacks

 Mirai: infected thousands of 10T devices to create DDoS attacks
exceeding 1 Thps.

 Smart Cameras: exposed feeds due to weak APIs.

* Industrial loT: attacks on SCADA systems threaten critical
infrastructure.
Lesson: simple misconfigurations can trigger global effects.
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Risk Management for loT Deployments
* Bullets:
* Device inventory & segmentation
* Secure boot, attestation
* Lifecycle patching

* Lecture Notes:
Adopt a risk-driven approach:

* |dentify devices, assign criticality.

* Enforce segmentation—IoT devices isolated from core networks.
* Use secure boot and sighed firmware.

* Plan for updates and decommissioning.
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Cloud Computing Fundamentals

Bullets:
Models: laaS, PaaS, SaaS
Deployment: Public, Private, Hybrid

Benefits vs risks

Lecture Notes:
Define:

laaS: Infrastructure layer (AWS EC2, Azure VMs)
PaaS: Application platforms (Google App Engine)

Saa$S: Full-service apps (Office 365)
Risks: multi-tenancy, lack of visibility, and dependency on provider controls.
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Cloud Security Models & Controls

* Bullets:
* |AM & Access Policies
* Encryption & Key Management

* Network Isolation
Emphasize Zero Trust IAM: least privilege, role separation.
Use KMS for encryption keys.
Adopt microsegmentation with VPCs, WAFs, and traffic
monitoring.
Encourage continuous auditing using cloud-native tools.
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Shared Responsibility Model

Bullets:

Cloud provider vs customer duties
« Common misconfigurations

* Case studies

Provider secures hardware, hypervisors; customer secures OS, apps, and
data.

Breaches often result from misconfigured S3 buckets or overly permissive
IAM roles.

Prevention: infrastructure-as-code scanning and automated compliance
tools.
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Example Case:

A company hosts sensitive data on AWS S3. Data leak occurs when the S3 bucket
is publicly accessible.

Question:

Who is responsible under the shared responsibility model?

Solution:

*AWS secures infrastructure (hardware, hypervisors).

*Customer is responsible for configuration and access management.

Thus, the organization is accountable for the breach.

Practice Tip:

Always run AWS Config or Azure Security Center scans for misconfigurations.
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Cloud Threats & Incident Examples

* Bullets:

* Unified ecosystem

* Cloud Al for loT telemetry
* Edge Al for low latency

* Lecture Notes:
Modern architectures blend:

* |oT sensors collecting data -
e Cloud Al analyzing and predicting threats -

* Edge Al executing local responses instantly.
Challenges: latency, data privacy, synchronization, and model drift
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Example:

Ransomware spreads via cloud-synced folders, encrypting local
and synced backups.

Problem:

How can cloud resilience mitigate this?

Solution:

*Enable versioned backups (immutable storage).

*Deploy ransomware behavior analytics in the cloud.

*Apply multi-factor authentication (MFA) to API access keys.
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Integrating Al, loT, and Cloud for Security

* Bullets:

* Defense-in-depth

e Zero Trust framework
* Al-assisted response

Combine:
 Defense-in-depth: multiple layers—network, endpoint, cloud.
e Zero Trust: no implicit trust; always verify.

 SOAR + Al: automation for alert triage and containment.
Key metric: Mean Time to Detect (MTTD) & Respond (MTTR) reduction.
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Practical Defense Strategies

e Bullets:

* Defense-in-depth

e Zero Trust framework
* Al-assisted response

* Lecture Notes:
Combine:

* Defense-in-depth: multiple layers—network, endpoint, cloud.
e Zero Trust: no implicit trust; always verify.

 SOAR + Al: automation for alert triage and containment.
Key metric: Mean Time to Detect (MTTD) & Respond (MTTR) reduction.
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Exercise:

Given a hybrid environment with loT sensors, Al analytics, and a cloud
dashboard:

1.ldentify three key risks.

2.Suggest specific countermeasures.

Solution Example:

Risk Countermeasure

Firmware signing + network
segmentation

Cloud credential theft IAM least privilege + MFA

Data validation + model
explainability

loT device takeover

Al model manipulation
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Ethical, Legal & Governance Considerations

* Bullets:

* Privacy and transparency
* Legal frameworks

* Al ethics and fairness

* Lecture Notes:
Regulations: GDPR, ISO 27017, NIST SP 800-207.
Al brings ethical challenges: bias, surveillance, and data misuse.
Promote accountability, explainability, and responsible Al aligned with
cybersecurity governance.
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Summary & Takeaways

* Bullets:

* Recap key lessons
* Discussion & Q&A
* Assignments

Reiterate:
* Al: enhances but also threatens security.
* |oT: expands attack surface exponentially.

* Cloud: transforms risk ownership and visibility.
Assignments:

* Analyze a case study (e.g., Tesla Cloud breach).

* Develop an loT security checklist.
Encourage students to discuss “how convergence reshapes defense.”
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Discussion & Q&A

* Open floor for questions

* Group discussion: propose a mitigation for a given scenario
* Assign readings and lab tasks

* Discussion Prompt:

* “In what ways can Al, IoT, and Cloud Computing collaborate to build a self-
defending cybersecurity ecosystem?”
Encourage students to discuss: automation, anomaly detection, and shared
responsibility.
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Homework 1: Al Threat Detection Lab
Objective:

Build a simple machine learning—based anomaly detector using simulated network data.
Instructions:

1.Download an open dataset (e.g., CICIDS2017 or NSL-KDD).

2.Use Python (Scikit-learn) to train a classifier to detect abnormal connections.
3.Evaluate accuracy, precision, and recall.

4 Write a short reflection (1 page) on how ML could be attacked or misled (adversarial
learning).

Expected Learning Outcome:

Students understand how Al aids in cyber defense and recognize its vulnerabilities.
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Homework 2: Cloud Security Configuration Audit

Objective:

Perform a practical review of cloud security settings using simulation or cloud lab (AWS Educate / Azure for Students).
Instructions:

1.Create a small virtual private cloud (VPC) or sandbox account.

2.Configure IAM users, S3 buckets (or Blob storage), and set access policies.

3.Intentionally create one misconfiguration (e.g., public bucket).

4.Detect and fix it using a security scanner (AWS Config, Cloud Security Posture Management tools).
5.Submit screenshots and a 1-page report describing the risk, fix, and lessons learned.

Expected Learning Outcome:

Students apply shared responsibility and cloud misconfiguration analysis to practical settings.

Optional Bonus Activity:
loT Risk Mapping Exercise — Identify 5 loT devices at home or campus and map their data flow, risks, and defenses. Submit a
visual diagram.
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Thank you for your listening
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