
MOBILE APPLICATIONS

IT 319 (OOP1 EARLIER)

IT DEPT.

TIU

3RD GRADE

Lect. Mohammad Salim 1

Week 5

Application Bar, List View and

Build A Custom Widget

2025-2026

2 Nov 2025

Thses slide notes are based on many different online resources such as Flutter.dev, Flutter Apprentice Book and The complete Fluter bootcamp course

CONTENTS

 Application bar

 List view

 Build a custom widget

 Navigation in Flutter

 Stateful Widgets and building an interactive

applications

2

APP BAR: SCAFFOLDING A MATERIAL APP

 By using MaterialApp widget we can get

Scaffold widget.

 Scaffold help us to get many attributes like

appBar and BottomBar and many more

others.

 The scaffold will expand to fill the

available space. That usually means that it

will occupy its entire window or device

screen.

3

APP BAR: SCAFFOLDING A MATERIAL APP

 An app bar consists of a toolbar and potentially other widgets,

such as a TabBar and a FlexibleSpaceBar.

 App bars are typically used in the Scaffold.appBar property, which

places the app bar as a fixed-height widget at the top of the

screen.

 The AppBar displays the toolbar widgets, leading, title, and actions,

above the bottom (if any). The bottom is usually used for

a TabBar.

4

https://api.flutter.dev/flutter/material/TabBar-class.html
https://api.flutter.dev/flutter/material/FlexibleSpaceBar-class.html
https://api.flutter.dev/flutter/material/Scaffold/appBar.html
https://api.flutter.dev/flutter/material/AppBar/leading.html
https://api.flutter.dev/flutter/material/AppBar/title.html
https://api.flutter.dev/flutter/material/AppBar/actions.html
https://api.flutter.dev/flutter/material/AppBar/bottom.html
https://api.flutter.dev/flutter/material/AppBar/bottom.html
https://api.flutter.dev/flutter/material/TabBar-class.html

APPBAR EXAMPLES

5

6

APP BAR: SCAFFOLDING A MATERIAL APP

7

APP BAR: SCAFFOLDING A MATERIAL APP

8

LIST VIEW

 ListView is the most commonly used scrolling widget. It displays its

children one after another in the scroll direction. In the cross axis, the

children are required to fill the ListView.

 There are four options for constructing a ListView, however we will

cover only two of them:

1. The default constructor takes an explicit List<Widget> of children. This

constructor is appropriate for list views with a small number of children

because constructing the List requires doing work for every child that

could possibly be displayed in the list view instead of just those children

that are actually visible.

2. The ListView.builder constructor takes an IndexedWidgetBuilder, which

builds the children on demand. This constructor is appropriate for list

views with a large (or infinite) number of children because the

builder is called only for those children that are actually visible. 9

https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/dart-core/List-class.html
https://api.flutter.dev/flutter/dart-core/List-class.html
https://api.flutter.dev/flutter/widgets/ListView/ListView.builder.html
https://api.flutter.dev/flutter/widgets/IndexedWidgetBuilder.html

LIST VIEW

This example uses the default constructor

for ListView which takes an explicit List<Widget> of

children. This ListView's children are made up

of Containers withText.

10

https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/dart-core/List-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/Container-class.html
https://api.flutter.dev/flutter/widgets/Text-class.html

LIST VIEW

This example mirrors the previous one, creating the

same list using the ListView.builder constructor. Using

the IndexedWidgetBuilder, children are built lazily and

can be infinite in number.

11

https://api.flutter.dev/flutter/widgets/ListView/ListView.builder.html
https://api.flutter.dev/flutter/widgets/IndexedWidgetBuilder.html

12
// Use this when: List might be large, from API, or infinite

BUILD A CUSTOM WIDGET

 Everything’s a widget in Flutter… so wouldn’t it be

nice to know how to make your own?

 There are several methods to create custom

widgets, but the most basic is to combine simple

existing widgets into the more complex widget that

you want,

 This is called composition

 In Practical steps (Put your cursor on Any Nested

Widget and right-click to show the context

menu. Then choose Refactor ▸ Extract ▸

Extract Flutter Widget….)

13

CUSTOM WIDGETS

14

HOW IT WORKS:

15

1. CustomButton Reusability:

1. The CustomButton widget is reused twice: once for the "Say Hello" button and once for the

"Say Goodbye" button.

2. The text and onPressed properties allow for customization.

2. Interactivity:

1. Each button performs a different action when pressed, demonstrating reusability with distinct

behaviors.

3. Output:

1. Clicking the "Say Hello" button prints "Hello Button Pressed!" in the console and shows a

SnackBar saying "Hello!".

2. Clicking the "Say Goodbye" button does the same with "Goodbye!".

PERFORMANCE TIP: USE CONST

16

NAVIGATION IN FLUTTER

 Flutter has an imperative routing mechanism, the Navigator widget, and a

more idiomatic declarative routing mechanism (which is similar to build

methods as used with widgets), the Router widget.

 The two systems can be used together (indeed, the declarative system is

built using the imperative system).

1. Typically, small applications are served well by just using the Navigator API,

via the MaterialApp constructor’s MaterialApp.routes property.

To learn about Navigator and its imperative API, see the Navigation

recipes in the Flutter cookbook, and the Navigator API docs.

2. More elaborate applications are usually better served by the Router API,

via the MaterialApp.router constructor.

17

https://api.flutter.dev/flutter/material/MaterialApp/routes.html
https://docs.flutter.dev/cookbook/navigation
https://docs.flutter.dev/cookbook/navigation
https://docs.flutter.dev/cookbook
https://api.flutter.dev/flutter/widgets/Navigator-class.html
https://api.flutter.dev/flutter/material/MaterialApp/MaterialApp.router.html

18

NAVIGATE TO A NEW SCREEN AND BACK

Most apps contain several screens for displaying different types of
information. For example, an app might have a screen that displays
products. When the user taps the image of a product, a new screen
displays details about the product.

 Terminology: In Flutter, screens and pages are called routes. The
remainder of this example refers to routes.

 In Android, a route is equivalent to an Activity. In iOS, a route is
equivalent to a ViewController. In Flutter, a route is just a
widget.

 This coming example uses the Navigator to navigate to a new
route.

19

https://api.flutter.dev/flutter/widgets/Navigator-class.html

NAVIGATE TO A NEW SCREEN AND BACK

1. Create two routes:

 First, create two routes to work with. Since this is a basic example, each route contains only a single button.

 Tapping the button on the first route navigates to the second route.

 Tapping the button on the second route returns to the first route. First, set up the visual structure:

20

NAVIGATE TO A NEW SCREEN AND BACK

2. Navigate to the second route using Navigator.push()

 To switch to a new route, use the Navigator.push() method. The push() method adds a Route to the stack of

routes managed by the Navigator. Where does the Route come from? You can create your own, or use

a MaterialPageRoute, which is useful because it transitions to the new route using a platform-specific animation.

 In the build() method of the FirstRoute widget, update the onPressed() callback:

21

https://api.flutter.dev/flutter/widgets/Navigator/push.html
https://api.flutter.dev/flutter/material/MaterialPageRoute-class.html

NAVIGATE TO A NEW SCREEN AND BACK

3. Return to the first route using Navigator.pop()

 How do you close the second route and return to the first? By using the Navigator.pop() method.

The pop() method removes the current Route from the stack of routes managed by the Navigator.

 To implement a return to the original route, update the onPressed() callback in

the SecondRoute widget:

22

https://api.flutter.dev/flutter/widgets/Navigator/pop.html

INTERACTIVE EXAMPLE

23

INTERACTIVE EXAMPLE

24

WHY NAVIGATION NEEDS CONTEXT

25

STATEFUL WIDGETS AND BUILDING AN INTERACTIVE

APPLICATIONS

26

STATEFUL WIDGETS AND BUILDING AN INTERACTIVE

APPLICATIONS

 A widget is either stateful or stateless. If a widget can change—when a user interacts with it, for example—it’s

stateful.

 A stateless widget never changes. Icon, IconButton, and Text are examples of stateless widgets. Stateless widgets

subclass StatelessWidget.

 A stateful widget is dynamic: for example, it can change its appearance in response to events triggered by user

interactions or when it receives data. Checkbox, Radio, Slider, InkWell, Form, and TextField are examples of

stateful widgets. Stateful widgets subclass StatefulWidget.

 A widget’s state is stored in a State object, separating the widget’s state from its appearance.

 The state consists of values that can change, like a slider’s current value or whether a checkbox is checked.

When the widget’s state changes, the state object calls setState(), telling the framework to redraw the

widget.

27

https://api.flutter.dev/flutter/widgets/Icon-class.html
https://api.flutter.dev/flutter/material/IconButton-class.html
https://api.flutter.dev/flutter/widgets/Text-class.html
https://api.flutter.dev/flutter/widgets/StatelessWidget-class.html
https://api.flutter.dev/flutter/material/Checkbox-class.html
https://api.flutter.dev/flutter/material/Radio-class.html
https://api.flutter.dev/flutter/material/Slider-class.html
https://api.flutter.dev/flutter/material/InkWell-class.html
https://api.flutter.dev/flutter/widgets/Form-class.html
https://api.flutter.dev/flutter/material/TextField-class.html
https://api.flutter.dev/flutter/widgets/StatefulWidget-class.html
https://api.flutter.dev/flutter/widgets/State-class.html

WIDGET LIFECYCLE: WHY SETSTATE() REBUILDS

 When you call setState():

 1. setState() tells Flutter the widget changed

 2. Flutter calls build() again for THAT widget

 3. Widget rebuilds and appears on screen

 4. Parent/other widgets DON'T rebuild (efficient!)

 Example:

 - You change servings with Slider

 - Only that widget rebuilds

 - AppBar stays the same (no rebuild)

 - Rest of app stays the same (no rebuild) Key: setState() rebuilds ONLY the Stateful widget's subtree

28

User changes state → setState() called → build() called → UI updates

STATEFUL WIDGETS AND BUILDING AN INTERACTIVE

APPLICATIONS

29

STATEFUL WIDGETS AND BUILDING AN INTERACTIVE

APPLICATIONS

30

STATFUL VS STATELESS WIDGETS

31

SIMPLE EXERCISES

EXERCISE: Build a Recipe List App REQUIREMENTS:

 ✓ AppBar with title + 1 action button (e.g., search)

 ✓ ListView with 5 recipes (use ListView.builder)

 ✓ Extract recipe items into a custom widget

 ✓ Tap a recipe → Navigate to detail screen (new screen)

 ✓ Detail screen shows full recipe + back button

Time: 1-2 hours Submission: Working Flutter project

32

 Widgets in Flutter: Flutter provides pre-built widgets for almost everything you need, and it

allows you to create custom widgets for branding or unique designs.

 ListView and ListTile: Use ListView and ListTile widgets to display lists efficiently. They are highly

versatile for building list-based UI components.

 Navigation in Flutter: Navigation is managed using the Navigator API from the MaterialApp

widget. It handles route management and transitions seamlessly.

 Stateless vs. Stateful Widgets: Start with StatelessWidgets for static UI. Use StatefulWidgets

only when your widget's state changes (e.g., dynamic data or user interactions).

 Recommendation: Prefer StatelessWidgets for most scenarios, as they are lightweight and

efficient. Use StatefulWidgets when updating the UI dynamically is necessary.
33

	Slide 1: Mobile Applications IT 319 (OOP1 earlier)
	Slide 2: Contents
	Slide 3: App Bar: Scaffolding a Material App
	Slide 4: App Bar: Scaffolding a Material App
	Slide 5: AppBar Examples
	Slide 6
	Slide 7: App Bar: Scaffolding a Material App
	Slide 8: App Bar: Scaffolding a Material App
	Slide 9: List View
	Slide 10: List View
	Slide 11: List View
	Slide 12
	Slide 13: Build a custom widget
	Slide 14: Custom Widgets
	Slide 15: How It Works:
	Slide 16: Performance Tip: Use const
	Slide 17: Navigation in Flutter
	Slide 18
	Slide 19: Navigate to a new screen and back
	Slide 20: Navigate to a new screen and back
	Slide 21: Navigate to a new screen and back
	Slide 22: Navigate to a new screen and back
	Slide 23: Interactive example
	Slide 24: Interactive example
	Slide 25: Why Navigation Needs context
	Slide 26: Stateful Widgets and building an interactive applications
	Slide 27: Stateful Widgets and building an interactive applications
	Slide 28: Widget Lifecycle: Why setState() Rebuilds
	Slide 29: Stateful Widgets and building an interactive applications
	Slide 30: Stateful Widgets and building an interactive applications
	Slide 31: Statful vs stateless widgets
	Slide 32: simple exercises
	Slide 33

