ees

\-v-'
IT DEPT.

TIU

MOBILE APPLICATIONS 30 GRADE
IT 3 I 9 (OOPI EARLIER)

Application Bar, List View and
Build A Custom Widget

2025-2026

Thses slide notes are based on many different online resources such as Flutter.dev, Flutter Apprentice Book and The complete Fluter bootcamp course

#eelection at the end -add
S ob.select= 1
#er_ob.select=1
ntext.scene.objects.actiw
M "Selected™ + str(modifier 8
Meirror_ob.select = 0
bpy .context.se lected ob
ata .objects[one.name] .S@

rint("please select exacthy =

_ OPERATOR CLASSES -

CONTENTS

Application bar

List view

Build a custom widget
Navigation in Flutter

Stateful Widgets and building an interactive
applications

APP BAR: SCAFFOLDING A MATERIALAPP

= By using Material App widget we can get
Scaffold widget.

= Scaffold help us to get many attributes like e
appBar and BottomBar and many more
others.

= The scaffold will expand to fill the
available space. That usually means that it
will occupy its entire window or device
screen.

APP BAR: SCAFFOLDING A MATERIALAPP

= An app bar consists of a toolbar and potentially other widgets,
such as a TabBar and a FlexibleSpaceBar.

= App bars are typically used in the Scaffold.appBar property, which
places the app bar as a fixed-height widget at the top of the
screen.

= The AppBar displays the toolbar widgets, leading, title, and actions,
above the bottom (if any).The bottom is usually used for
a TabBar.

class MyStatelessWidget extends StatelessWidget { leading title s

const MyStatelessWidget({Key? key}) : super(key: key); % n g%g
e

@override
Widget build(BuildContext context) {
return Scaffold(

4
sppBar . Appar |

title: const Text('AppBar Demo'),

flexibleSpace

bottom

https://api.flutter.dev/flutter/material/TabBar-class.html
https://api.flutter.dev/flutter/material/FlexibleSpaceBar-class.html
https://api.flutter.dev/flutter/material/Scaffold/appBar.html
https://api.flutter.dev/flutter/material/AppBar/leading.html
https://api.flutter.dev/flutter/material/AppBar/title.html
https://api.flutter.dev/flutter/material/AppBar/actions.html
https://api.flutter.dev/flutter/material/AppBar/bottom.html
https://api.flutter.dev/flutter/material/AppBar/bottom.html
https://api.flutter.dev/flutter/material/TabBar-class.html

APPBAR EXAMPLES

= My Recipes Q
dart
// Real example with leading + title + actions
AppBar(

leading: IconButton(icon: Icon(Icons.menu), onPressed: () {}),

title: Text('My Recipes'),

actions: [

IconButton(icon: Icon(Icons.search), onPressed: () {}),
1,
Hello,World

import ‘package:flutter/materia(Dzar

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {
@override
Widget build(BuildContext context) {
return MaterialApp(
home: Scaffold(
appBar: AppBar(
title: Text('My AppBar'),

co~NOUSA WN

).
body: Center(

child: Text('Hello World!'),
),
bottomNavigationBar: BottomAppBar (
child: Row(
children: |
IconButton(onPressed: () {},
Icon(Icons.menu)),
Spacer(),
IconButton(onPressed: () {},
Icon(Icons.search)),

My AppBar

Hello World!

APP BAR: SCAFFOLDING A MATERIALAPP

APP BAR: SCAFFOLDING A MATERIALAPP

¢ main.dart

| Am Rich

main() {
runApp (
MaterialApp(
home: Scaffold(
backgroundColor: Colors.
appBar: AppBar(
title: Text()
backgroundColor: Colors.
)
body: Center(
child: Image(
image:
NetworkImage

ListView is the most commonly used scrolling widget. It displays its

children one after another in the scroll direction. In the cross axis, the
children are required to fill the ListView.

There are four options for constructing a ListView, however we will
cover only two of them:

The default constructor takes an explicit List<\Widget> of children.This
constructor is appropriate for list views with a small number of children
because constructing the List requires doing work for every child that
could possibly be displayed in the list view instead of just those children
that are actually visible.

The ListView.builder constructor takes an IndexedVVidgetBuilder, which
builds the children on demand.This constructor is appropriate for list
views with a large (or infinite) number of children because the
builder is called only for those children that are actually visible.

https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/dart-core/List-class.html
https://api.flutter.dev/flutter/dart-core/List-class.html
https://api.flutter.dev/flutter/widgets/ListView/ListView.builder.html
https://api.flutter.dev/flutter/widgets/IndexedWidgetBuilder.html

ListView(
padding: const Edgelnsets.all(8),
children: <Widget>|
Container(
height: 50,
color: Colors.amber[600],
child: const Center(child: Text('Entry A")),
i
Container(
height: 50,
color: Colors.amber[500],
child: const Center(child: Text('Entry B')),
I
Container(
height: 50,
color: Colors.amber[100],
child: const Center(child: Text('Entry C')),
i
1,

This example uses the default constructor

for ListView which takes an explicit List<VVidget> of
children. This ListView's children are made up

of Containers with Text.

Entry A

Entry B

Entry C

https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/dart-core/List-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/Container-class.html
https://api.flutter.dev/flutter/widgets/Text-class.html

final List<String> entries = <String>['A", 'B', 'C']; This example mirrors the previous one, creating the
final List<int> colorCodes = <int>[600, 500, 100]: same list using the ListView.builder constructor. Using

the IndexedVWVidgetBuilder, children are built lazily and
ListView.builder(can be infinite in number.

padding: const EdgeInsets.all(8),
itemCount: entries.length,
itemBuilder: (BuildContext context, int index) {
return Container(
height: 50,
color: Colors.amber[colorCodes|[index]],
child: Center(child: Text('Entry ${entries[index]}')),
)i
)
)i

https://api.flutter.dev/flutter/widgets/ListView/ListView.builder.html
https://api.flutter.dev/flutter/widgets/IndexedWidgetBuilder.html

Example for Default Constructor: Example for ListView.builder :

dart dart
ListView(ListView.builder(

children: [itemCount: 10,

ListTile(. . .
. itemBuilder: (context, index) {
leading: Icon(Icons.map),
title: Text('Map'), return ListTile(
), title: Text('Item $index'),
ListTile();
leading: Icon(Icons.photo), },
title: Text('Photos'),) s
r

y I/ ' Use this when: List might be large, from API, or infinite

BUILD A CUSTOMWIDGET

Everything’s a widget in Flutter... so wouldn’t it be
nice to know how to make your own?

BMI CALCULATOR
EREEE - N

BMI CALCULATOR

There are several methods to create custom
widgets, but the most basic is to combine simple
existing widgets into the more complex widget that
you want,

This is called composition

In Practical steps (Put your cursor on Any Nested
Widget and right-click to show the context
menu.Then choose Refactor » Extract »

Extract Flutter Widget....) CALCULATE
IconButton Slider Text
P ooar 01:15
M:15 ﬂ‘l] ———
Text

Container

class MyApp extends StatelessWidget { () Copy code
@override
Widget build(BuildContext context) {
return MaterialApp(
home: Scaffold(

appBar: AppBar(VY -7
CUSTOM WIDG ETS title: Text('Custom Button Demo'), :
I

body: Center(
child: Column(
mainAxisAlignment: MainAxisAlignment.center,

Example Code:

children: [
(¥ Copy code CustomButton(
text: 'Say Hello',
onPressed: () {
print('Hello Button Pressed!');

dart

class CustomButton extends StatelessWidget {

final String text;
final VoidCallback onPressed; ScaffoldMessenger.of(context).showSnackBar(
SnackBar(content: Text('Hello!')),
);
CustomButton({required this.text, required this.onPressed}); },

),
SizedBox(height: 20),

@override
Widget build(BuildContext context) { CustomButton(
return ElevatedButton(text: “Say Goodbye®,
onPressed: () {
anPressed: onPressed, print('Goodbye Button Pressed!');
child: Text(text), ScaffoldMessenger.of(context).showSnackBar (

); SnackBar(content: Text('Goodbye!')),
14

HOW IT WORKS:

I. CustomButton Reusability:

|. The CustomButton widget is reused twice: once for the "Say Hello" button and once for the
"Say Goodbye" button.

2. The text and onPressed properties allow for customization.
2. Interactivity:

|. Each button performs a different action when pressed, demonstrating reusability with distinct
behaviors.

3. Output:

|. Clicking the "Say Hello" button prints "Hello Button Pressed!" in the console and shows a
SnackBar saying "Hello!".

2. Clicking the "Say Goodbye" button does the same with "Goodbye!".

PERFORMANCE TIP: USE CONST

dart

const Icon(Icons.add)
const SizedBox(height: 16)
const Text('Label')

const RecipeCard(
name: 'Pasta’,
servings: 2,
onTap: null,

)

NAVIGATION IN FLUTTER "f

Flutter has an imperative routing mechanism, the Navigator widget, and a
more idiomatic declarative routing mechanism (which is similar to build
methods as used with widgets), the Router widget.

The two systems can be used together (indeed, the declarative system is
built using the imperative system).

Typically, small applications are served well by just using the Navigator API,
via the Material App constructor’s MaterialApp.routes property.

To learn about Navigator and its imperative AP, see the Navigation
recipes in the Flutter cookbook, and the Navigator AP| docs.

More elaborate applications are usually better served by the Router API,
via the MaterialApp.router constructor.

https://api.flutter.dev/flutter/material/MaterialApp/routes.html
https://docs.flutter.dev/cookbook/navigation
https://docs.flutter.dev/cookbook/navigation
https://docs.flutter.dev/cookbook
https://api.flutter.dev/flutter/widgets/Navigator-class.html
https://api.flutter.dev/flutter/material/MaterialApp/MaterialApp.router.html

® e < Cookbook | Flutter > -+
< CcC O @& docs.flutter.dev/cookbook
25 Apps E= Research E-Learn... E=3 Flutter Courses [E=5 Security E.4 Flutter Apprentice... Ed ™My Personal webs... &@ Wirify — The w

< Flutter

M

Get started ~

Samples & tutorials ~

Flutter Gallery [running app] =
Flutter Gallery [repo] =
Sample apps on GitHub &=
Cookbook

Codelabs

Tutorials

Development ~
» User interface

» Data & backend

» Accessibility & internationalization

p Platform integration

» Packages & plugins

» Add Flutter to existing app

» Tools & features

» Migration notes

Testing & debugging ~
Performance & optimization ~
Deployment ~
Resources ~

Cookbook

Cookbook

This cookbook contains recipes that demonstrate how to solv
contained and can be used as a reference to help you build ug

Animation

« Animate a page route transition

e Animate a widget using a physics simulation
e Animate the properties of a container

e Fade a widget in and out

Design

e Add a Drawer to a screen

e Display a snackbar

e Export fonts from a package

e Update the Ul based on orientation

e Use a custom font

e Use themes to share colors and font styles
e Work with tabs

NAVIGATE TO A NEW SCREEN AND BACK

Most apps contain several screens for displaying different types of First Route Second Route
information. For example, an app might have a screen that displays
products.When the user taps the image of a product, a new screen
displays details about the product.

= Terminology: In Flutter, screens and pages are called routes. The
remainder of this example refers to routes.

® InAndroid, a route is equivalent to an Activity. In iOS, a route is
equivalent to a ViewController. In Flutter, a route is just a
widget.

= This coming example uses the Navigator to navigate to a new
route.

The next few sections show how to navigate between two routes, using these steps:

1. Create two routes.
2. Navigate to the second route using Navigator.push(). 19
3. Return to the first route using Navigator.pop().

https://api.flutter.dev/flutter/widgets/Navigator-class.html

NAVIGATE TO A NEW SCREEN AND BACK

|. Create two routes:

First, create two routes to work with. Since this is a basic example, each route contains only a single button.

= Tapping the button on the first route navigates to the second route.

class FirstRoute extends StatelessWidget {
const FirstRoute({Key? key}) : super(key: key);

@override
Widget build(BuildContext context) ({
return Scaffold(
appBar: AppBar (
title: Text('First Route')
),
body: Center(
child: ElevatedButton(
child: Text('Open route')
onPressed: () {

// Navigate to second route when tapped.

Tapping the button on the second route returns to the first route. First, set up the visual structure:

class SecondRoute extends StatelessWidget {
const SecondRoute({Key? key}) : super(key: key);

@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(
title: Text("Second Route"),
),
body: Center(
child: ElevatedButton(
onPressed: () {
// Navigate back to first route when tapped.

e
child: Text('Go back!")

NAVIGATE TO A NEW SCREEN AND BACK

2. Navigate to the second route using Navigator.push()

= To switch to a new route, use the Navigator.push() method.The push() method adds a Route to the stack of
routes managed by the Navigator.Where does the Route come from? You can create your own, or use

a MaterialPageRoute, which is useful because it transitions to the new route using a platform-specific animation.

" In the build() method of the FirstRoute widget, update the onPressed() callback:

// Within the "FirstRoute’ widget
onPressed: () {
Navigator.push(
context,

MaterialPageRoute(builder: (context) => SecondRoute()),
)i
}

21

https://api.flutter.dev/flutter/widgets/Navigator/push.html
https://api.flutter.dev/flutter/material/MaterialPageRoute-class.html

NAVIGATE TO A NEW SCREEN AND BACK

3. Return to the first route using Navigator.pop()

" How do you close the second route and return to the first! By using the Navigator.pop() method.
The pop() method removes the current Route from the stack of routes managed by the Navigator.

= To implement a return to the original route, update the onPressed() callback in
the SecondRoute widget:

// Within the SecondRoute widget

onPressed: () {
Navigator.pop(context);

}

22

https://api.flutter.dev/flutter/widgets/Navigator/pop.html

INTERACTIVE EXAMPLE

class FirstRoute extends StatelessWidget {

import 'package:flutter/material.dart'; const FirstRoute({Key? key}) : super(key: key):
void main() { @override
runApp(const MaterialApp(Widget build(BuildContext context) {
title: 'Navigation Basics', return Scaffold(
home: FirstRoute(), appBar: AppBar (o '
)) title: const Text('First Route'),
!)'
t body: Center(
child: ElevatedButton(

child: const Text('Open route'),

onPressed: () {
Navigator.push(

context,
MaterialPageRoute(builder: (context) => const SecondRoute()),

),
23

INTERACTIVE EXAMPLE

class SecondRoute extends StatelessWidget {
const SecondRoute({Key? key}) : super(key: key);

: 3 % %
@override First Route % ¢ Second Route %
Widget build(BuildContext context) {

return Scaffold(
appBar: AppBar(
title: const Text("Second Route"),

),
body: Center(

child: ElevatedButton(

onPressed: () { =

Navigato .pop(conte) '
I xt); pen route
}l

child: const Text('Go back!'),

} 24

WHY NAVIGATION NEEDS CONTEXT

dart

/ This works becauvse context tells Navigator where you are 1n
Navigator.of(context).push(
MaterialPageRoute(builder: (context) => DetailScreen()),

'_'." ee Liponr rant "o 2 context) . patrtern:s
- Navigator.of(context) 2+ Navigate to screens
- Theme.of(context) + Get app colors/fonts

MediaQuery.of(context) %+ Get screen size

25

STATEFULWIDGETS AND BUILDING AN INTERACTIVE
APPLICATIONS

Scaffold What We,“ Make

/

Row

Image Image

. D D D D
dicel.png é dice2.png

STATEFULWIDGETS AND BUILDING AN INTERACTIVE

APPLICATIONS

= A widget is either stateful or stateless. If a widget can change—when a user interacts with it, for example—it’s
stateful.

= A stateless widget never changes. Icon, lconButton, and Text are examples of stateless widgets. Stateless widgets
subclass StatelessVVidget.

= A stateful widget is dynamic: for example, it can change its appearance in response to events triggered by user
interactions or when it receives data. Checkbox, Radio, Slider, InkVVell, Form, and TextField are examples of
stateful widgets. Stateful widgets subclass StatefulVWidget.

= A widget’s state is stored in a State object, separating the widget’s state from its appearance.

= The state consists of values that can change, like a slider’s current value or whether a checkbox is checked.
When the widget’s state changes, the state object calls setState(), telling the framework to redraw the

widget.

g Stateful Stateless

Can change? YES NO
g
Uses setState()? YES NO H .
Y Active Inactive 27

When to use? User interactions Fixed content
Example Slider lcon, Text

https://api.flutter.dev/flutter/widgets/Icon-class.html
https://api.flutter.dev/flutter/material/IconButton-class.html
https://api.flutter.dev/flutter/widgets/Text-class.html
https://api.flutter.dev/flutter/widgets/StatelessWidget-class.html
https://api.flutter.dev/flutter/material/Checkbox-class.html
https://api.flutter.dev/flutter/material/Radio-class.html
https://api.flutter.dev/flutter/material/Slider-class.html
https://api.flutter.dev/flutter/material/InkWell-class.html
https://api.flutter.dev/flutter/widgets/Form-class.html
https://api.flutter.dev/flutter/material/TextField-class.html
https://api.flutter.dev/flutter/widgets/StatefulWidget-class.html
https://api.flutter.dev/flutter/widgets/State-class.html

WIDGET LIFECYCLE:WHY SETSTATE() REBUILDS

When you call setState():

|. setState() tells Flutter the widget changed

2. Flutter calls build() again for THAT widget
3.Widget rebuilds and appears on screen

4. Parent/other widgets DON'T rebuild (efficient!)

= Example:

= -You change servings with Slider

= - Only that widget rebuilds

= - AppBar stays the same (no rebuild)

- Rest of app stays the same (no rebuild) Key: setState() rebuilds ONLY the Stateful widget's subtree

28

User changes state — setState() called — build() called — Ul updates

STATEFULWIDGETS AND BUILDING AN INTERACTIVE

APPLICATIONS

46 .
A % a 14@3:

[main() HMyHomePageH_MyHomePageState]

MaterialApp

Flutter Demo Home Page

The starting point...

Scaffold

[AppBar] [Center] [FloatingActionButton]

import 'package:flutter/material.dart’;
[j [j You have pushed the button this many times:
Text() Text() O

void main() => runApp(MyHomePage());

class MyHomePage extends StatefulWidget {

@override °
_MyHomePageState createState() => _MyHomePageState();
} 29

STATEFULWIDGETS AND BUILDING AN INTERACTIVE

APPLICATIONS

. . So here is our full Widget tree.
You may notice that we have returned an object of _MyHomePageState

Class. This class is of type State<MyHomePage> and has a build() method

that returns the Widget that should appear on the screen. @override
Widget build(BuildContext context) {
return MaterialApp(
home: Scaffold(
appBar: AppBar(

class _MyHomePageState extends State<MyHomePage> { title: Text(‘Hello Flutter’),
@override),
Widget build(BuildContext context) { body: Center(
return null; child: Column(
} mainAxisAlignment: MainAxisAlignment.center,
} children: <Widget>[

Text(‘You have pushed the button this many times:’,),
Text(‘$_counter’),

In _MyHomePageState we will now have a global variable that will) 1,
represent state of our app and a method that will change the state of our), '
app on every click of FloatingActionButton. floatingActionButton: FloatingActionButton(

onPressed: _incrementCounter,
tooltip: ‘Increment’,
child: Icon(Icons.add),
int _counter = 0;),
void _incrementCounter() {) 30
setState(() { !
_counter++;) ’

191 +

STATFULVS STATELESS WIDGETS

StatelessWidget Example:

dart

class MyStatelessWidget extends StatelessWidget {
@override
Widget build(BuildContext context) A{
return Text('I do not change!');

dart W) CO."X;‘;}Q&{-L%

class MyStatefulWidget extends StatefulWidget { erail
@override y
State<MyStatefulWidget> createState() => _MyStatefulWidgetState()

class _MyStatefulWidgetState extends State<MyStatefulWidget> {
int counter = 0;

@override
Widget build(BuildContext context) {
return Column(
children: [
Text('Counter: $counter'),
ElevatedButton(
onPressed: () {
setState(() {
counter++;
1)
H
child: Text('Increment'),

)

EXERCISE: Build a Recipe List App REQUIREMENTS:

= AppBar with title + | action button (e.g., search)

= ListView with 5 recipes (use ListView.builder)

= Extract recipe items into a custom widget

= Tap a recipe — Navigate to detail screen (new screen)
= Detail screen shows full recipe + back button

Time: |-2 hours Submission:Working Flutter project

32

KEY POINTS =

Widgets in Flutter: Flutter provides pre-built widgets for almost everything you nged, and it
allows you to create custom widgets for branding or unique designs.

ListView and ListTile: Use ListView and ListTile widgets to display lists efficiently. T
versatile for building list-based Ul components.
Ixﬂater

Navigation in Flutter: Navigation is managed using the Navigator APl from the
widget. It handles route management and transitions seamlessly.

Stateless vs. Stateful Widgets: Start with StatelessWidgets for static Ul. Use Stat
only when your widget's state changes (e.g., dynamic data or user interactions).

Recommendation: Prefer StatelessWidgets for most scenarios, as they are lightwei
efficient. Use StatefulWidgets when updating the Ul dynamically is necessary.

	Slide 1: Mobile Applications IT 319 (OOP1 earlier)
	Slide 2: Contents
	Slide 3: App Bar: Scaffolding a Material App
	Slide 4: App Bar: Scaffolding a Material App
	Slide 5: AppBar Examples
	Slide 6
	Slide 7: App Bar: Scaffolding a Material App
	Slide 8: App Bar: Scaffolding a Material App
	Slide 9: List View
	Slide 10: List View
	Slide 11: List View
	Slide 12
	Slide 13: Build a custom widget
	Slide 14: Custom Widgets
	Slide 15: How It Works:
	Slide 16: Performance Tip: Use const
	Slide 17: Navigation in Flutter
	Slide 18
	Slide 19: Navigate to a new screen and back
	Slide 20: Navigate to a new screen and back
	Slide 21: Navigate to a new screen and back
	Slide 22: Navigate to a new screen and back
	Slide 23: Interactive example
	Slide 24: Interactive example
	Slide 25: Why Navigation Needs context
	Slide 26: Stateful Widgets and building an interactive applications
	Slide 27: Stateful Widgets and building an interactive applications
	Slide 28: Widget Lifecycle: Why setState() Rebuilds
	Slide 29: Stateful Widgets and building an interactive applications
	Slide 30: Stateful Widgets and building an interactive applications
	Slide 31: Statful vs stateless widgets
	Slide 32: simple exercises
	Slide 33

