

X-RAY TUBE AND HEAT DISPERSING

Dr. Mahmoud S Dahoud
Fundamental of Radio Physics
Fall semester
Week 5
Date: Nov. 4th 2025

Outline

- Limitation of x-ray tube
- Line focus
- Rotational anode tube
- Heat rating

Objectives

The student should be able to do the followings;

- * Explain the limitation of x-ray tube
- * Mention the effect of line focus
- * Explain the advantages of rotational anode tube
- * Describe the heat rating

Limitation of X-Ray Tube

- 1- Heat generated during operation, which can damage the tube
- 2- The inefficiency of energy conversion (less than 1% of the input energy is converted to x-rays)
- 3- Limited control over independent operation of parameters like kVp and mAs (in older gas-filled tubes)
- 4- Practical limits on filament current which can affect the maximum mAs.
- 5- Radiation hazard

Limitation of X-Ray Imaging

X-ray imaging has several limitations:

- 1- difficulty capturing soft tissues
- 2- limited detail for complex fractures
- 3- exposure to ionizing radiation.

Question:

Why can't x-rays detect soft tissue injuries?

Answer:

Because these tissues don't absorb x-rays the same way bones do, many injuries remain undetected on standard X-ray scans.

Line Focus

The advantage is

- simultaneously improves spatial resolution and heat capacity.

The disadvantage is

* the radiation intensity on the cathode side of the x-ray field is greater than that on the anode side.

Electrons interact with target atoms at various depths into the target. So the anode-heel effect may limit the field sizes that can be used

Rotational anode tube

The advantages are of rotational anode:

- 1- disperse the heat generated when a beam of electrons strikes it, allowing for higher power and shorter exposure times than stationary anode tubes.
- 2- This design significantly improves performance.

Heat Rating

It's the thermal capacity and limits, which are crucial for preventing damage during operation.

The rating **depends on factors**

- 1- focal spot size
- 2- anode material
- 3- cooling systems

The heat units can be calculated from the following equations

$$\begin{aligned} \text{Number of heat units (one phase)} (HU) &= (\text{Tube voltage})(\text{Tube current})(\text{Time}) \\ &= (kVp)(mA)(\text{sec}) \end{aligned}$$

$$\begin{aligned} \text{Number of heat units (three phases)} (HU) &= (\text{Tube voltage})(\text{Tube current})(\text{Time})(1.35) \\ &= (kVp)(mA)(\text{sec})(1.35) \end{aligned}$$

References

- Bushong S. C., . (2017). *Radiologic science for technologists*. St. Louis, Missouri: Elsevier.
- Al-Qurashi M., and Qasim H., . (2015). *Radiation Physics and its Applications in Diagnostic Radiological techniques*. Medical technical University, Iraq
- Hende W., and Ritenour E.,. (2002). *Medical Imaging Physics*. Willy-Liss,Inc