

Tishk International University
Faculty of Administrative Sciences and
Economics

MATHEMATICS

FOR ECONOMICS AND BUSINESS

BUS 143
Part 2

I Grade- Fall

Assist. Prof. Dr. Hamdi Serin

Polynomials

A polynomial looks like this:

$$4xy^2 + 3x - 5$$

example of a polynomial
this one has 3 terms

Polynomial comes from *poly-* (meaning "many") and *-nomial* (in this case meaning "term") ... so it says "many terms"

A polynomial can have:

constants (like 3, -20, or $\frac{1}{2}$)

variables (like x and y)

exponents (like the 2 in y^2), but only 0, 1, 2, 3, ... etc are allowed

that can be combined using **addition, subtraction, multiplication and division** ...

... except ...

... **not** division by a variable (so something like $2/x$ is right out)

So:

A polynomial can have constants, variables and exponents,
but never division by a variable.

Also they can have one or more terms, but not an **infinite** number of terms.

Polynomial or Not?

exponents: 0, 1, 2, ...

5 xy^2 - 3 x + 5 y^3 - 3

terms

A Polynomial

3 xy^{-2}

$\frac{2}{x+2}$

Not Polynomials

These **are** polynomials:

- $3x$
- $x - 2$
- $-6y^2 - (\frac{7}{9})x$
- $3xyz + 3xy^2z - 0.1xz - 200y + 0.5$
- $512v^5 + 99w^5$
- 5

(Yes, "5" is a polynomial, **one term is allowed**, and it can be just a constant!)

These are **not** polynomials

- $3xy^{-2}$ is not, because the exponent is "-2" (exponents can only be 0,1,2,...)
- $2/(x+2)$ is not, because dividing by a variable is not allowed
- $1/x$ is not either
- \sqrt{x} is not, because the exponent is " $1/2$ " (see [fractional exponents](#))

But these **are** allowed:

- $x/2$ is **allowed**, because you can divide by a constant
- also $3x/8$ for the same reason
- $\sqrt{2}$ is allowed, because it is a constant (= 1.4142...etc)

Monomial, Binomial, Trinomial

There are special names for polynomials with 1, 2 or 3 terms:

$3xy^2$
Monomial (1 term)

$5x - 1$
Binomial (2 terms)

$3x + 5y^2 - 3$
Trinomial (3 terms)

How do you remember the names? Think cycles!

*There is also quadrinomial (4 terms) and quintinomial (5 terms),
but those names are not often used.*

Variables

Polynomials can have no variable at all

Example: **21** is a polynomial. It has just one term, which is a constant.

Or one variable

Example: **$x^4 - 2x^2 + x$** has three terms, but only one variable (x)

Or two or more variables

Example: **$xy^4 - 5x^2z$** has two terms, and three variables (x, y and z)

What is Special About Polynomials?

Because of the strict definition, polynomials are **easy to work with**.

For example we know that:

- If you add polynomials you get a polynomial
- If you multiply polynomials you get a polynomial

So you can do lots of additions and multiplications, and still have a polynomial as the result.

Also, polynomials of one variable are easy to graph, as they have smooth and continuous lines.

Example: $x^4 - 2x^2 + x$

See how nice and smooth the curve is?

Degree

The **degree** of a polynomial with only one variable is the **largest exponent** of that variable.

Example:

$$4x^3 - x + 3 \quad \text{The Degree is 3 (the largest exponent of } x\text{)}$$

Standard Form

The [Standard Form](#) for writing a polynomial is to put the terms with the highest degree first.

Example: Put this in Standard Form: $3x^2 - 7 + 4x^3 + x^6$

The highest degree is 6, so that goes first, then 3, 2 and then the constant last:

$$x^6 + 4x^3 + 3x^2 - 7$$

Which of the following is **not** a polynomial?

A $5x^3 - x/2$

B $3xy - 4yz + 2xz$

C $52x^3 - 19y^5$

D $3/(x - 5)$

0.5 points
0.5 points

0.5 points

What is the degree of the polynomial $5x^3 - 8x + 3x^5 + 4x^2 - 7x^4 + 1$?

A 3

B 4

C 5

D 6

Incorrect

Correct

Incorrect

Which of the following is a polynomial?

$$A \quad 3x^2 - 3x^{1/2} + 2y^{2/3}$$

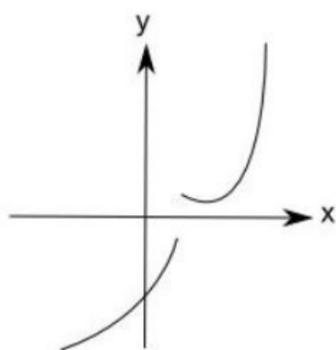
$$B -7x^3y^{-1}$$

$$C \quad 5x^3 - 3xy^2 + 8y^4 - 3$$

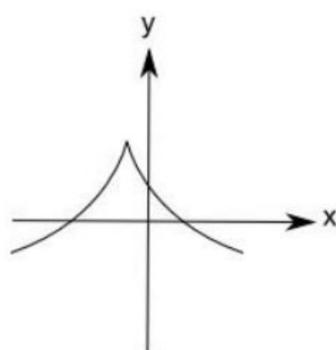
$$\mathbf{D} \quad \frac{2}{x-4}$$

Which one of the following could be the graph of a polynomial?

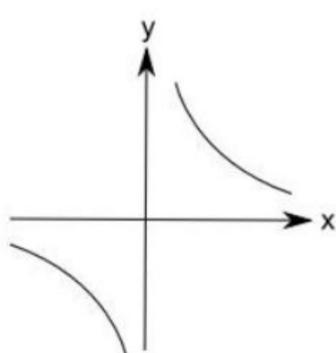
A



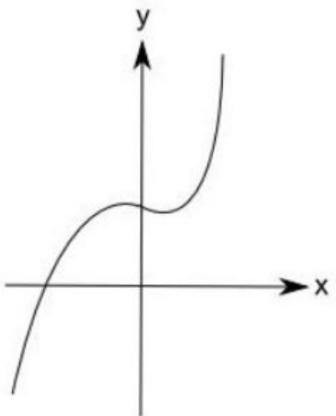
B



C



D



Adding Polynomials

Two Steps:

- Place **like terms** together
- Add the like terms

Example: Add $2x^2 + 6x + 5$ and $3x^2 - 2x - 1$

Start with: $2x^2 + 6x + 5 + 3x^2 - 2x - 1$

Place like terms together: $2x^2 + 3x^2 + 6x - 2x + 5 - 1$

Which is: $(2+3)x^2 + (6-2)x + (5-1)$

Add the like terms: $5x^2 + 4x + 4$

Adding Several Polynomials

We can add several polynomials together like that.

Example: Add $(2x^2 + 6y + 3xy)$, $(3x^2 - 5xy - x)$ and $(6xy + 5)$

Line them up in columns and add:

$$\begin{array}{r} 2x^2 + 6y + 3xy \\ 3x^2 - 5xy - x \\ \hline 6xy + 5 \end{array}$$

$$5x^2 + 6y + 4xy - x + 5$$

Add the polynomials $(3x^2 - 6x + xy)$, $(2x^3 - 5x^2 - 3y)$ and $(7x + 8y)$

A $2x^3 - 8x^2 + x + xy + 5y$

B $2x^3 - 2x^2 + x + xy - 5y$

C $2x^3 - 2x^2 - x + xy + 5y$

D $2x^3 - 2x^2 + x + xy + 5y$

$$\begin{array}{r} 3x^2 \\ 2x^3 - 5x^2 \\ \hline 2x^3 - 2x^2 \end{array}$$

mathematik
topcon
drill
spield

Subtract $(-3x^2 + 5y - 4xy + y^2)$ from $(2x^2 - 4y + 7xy - 6y^2)$

A $-5x^2 + 9y - 11xy + 7y^2$

B $5x^2 - 9y + 11xy - 7y^2$

C $-x^2 + y + 3xy - 5y^2$

D $-x^2 - 9y + 11xy - 7y^2$

Maths
Skills

Algebra
Equations
Functions
Graphs

Subtract $(4x^2 + 2x - 3y + 7xy - 3y^2)$ from $(3x^2 - 5x + 8y + 7xy + 2y^2)$

A $-x^2 - 7x + 11y + 5y^2$

B $-x^2 - 7x + 11y + 14xy + 5y^2$

C $x^2 + 7x + 11y - y^2$

D $x^2 + 7x - 11y - 5y^2$

Answers
1. $x^2 + 7x + 11y - y^2$
2. $x^2 + 7x - 11y - 5y^2$
3. $-x^2 - 7x + 11y + 5y^2$
4. $-x^2 - 7x + 11y + 14xy + 5y^2$

If $P = 5x^4 - 2x^2 + 4x - 3$ and $Q = 5x^4 + 3x^3 - 4x + 3$, what is $P - Q$?

A $-3x^3 - 5x^2 + 8x - 6$

B $-3x^3 - 2x^2 + 8x - 6$

C $-3x^3 + 2x^2 + 8x - 6$

D $-3x^3 - 2x^2$

1
2
3
4
5
6
7
8
9
10

If $P = 4x^4 - 3x^3 + x^2 - 5x + 11$
and $Q = -3x^4 + 6x^3 - 8x^2 + 4x - 3$
what is $2P + Q$?

A $5x^4 - 6x^2 - 6x + 19$

B $5x^4 - 12x^3 - 6x^2 - 6x + 19$

C $2x^4 + 3x^3 - 7x^2 - x + 8$

D $5x^4 - 6x^2 - 14x + 19$

ANSWER
EXPLANATION
QUESTION
ANSWER
EXPLANATION
ANSWER

If $P = 4x^4 - 3x^3 + x^2 - 5x + 11$ and $Q = -3x^4 + 6x^3 - 8x^2 + 4x - 3$, what is $P - 2Q$?

$$A -2x^4 + 9x^3 - 15x^2 + 3x + 5$$

$$B \quad 10x^4 + 9x^3 + 17x^2 - 13x + 17$$

$$C \quad 10x^4 - 15x^3 + 17x^2 - 13x + 17$$

D $14x^4 - 18x^3 + 18x^2 - 18x + 28$

（本部新書）
新編中華書局
新編
新編中華書局影印
新編中華書局影印
新編中華書局影印
新編中華書局影印

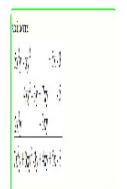
Add the polynomials $(5x^2y - xy^2 + 5x - 3)$, $(4xy^2 - 3y + 7xy - 5)$ and $(2x^2y - 3xy)$

A $7x^2y + 3xy^2 - 3y + 4xy + 5x + 2$

B $3x^2y + 3xy^2 - 3y + 4xy + 5x - 8$

C $7x^2y - 5xy^2 - 3y + 4xy + 5x - 8$

D $7x^2y + 3xy^2 - 3y + 4xy + 5x - 8$



If $P = 3x^2 + xy - 5y^2$, $Q = 2x^2 - xy + 3y^2$ and $R = -6x^2 + 4xy - 7y^2$,
what is $P + Q - R$?

A $11x^2 - 4xy + 5y^2$

B $-x^2 - 4xy + 5y^2$

C $-x^2 - 2xy + 5y^2$

D $11x^2 - 4xy - 9y^2$

$$P = 3x^2 + xy - 5y^2,$$

$$Q = 2x^2 - xy + 3y^2 \text{ and}$$

$$R = -6x^2 + 4xy - 7y^2$$

What is $P - (Q + R)$?

A $-5x^2 - 2xy - 15y^2$

B $7x^2 + 2xy - y^2$

C $7x^2 - 2xy - y^2$

D $-5x^2 + 6xy - 15y^2$

91
92
93
94

95
96
97
98

1 term \times 1 term (monomial times monomial)

To multiply one term by another term, first multiply the **constants**, then multiply **each variable** together and combine the result, like this (press play):

$$(2xy)(4y) = 2 \cdot 4 \cdot xy \cdot y = 8xy^2$$

1 term \times 2 terms (monomial times binomial)

Multiply the single term by each of the two terms, like this:

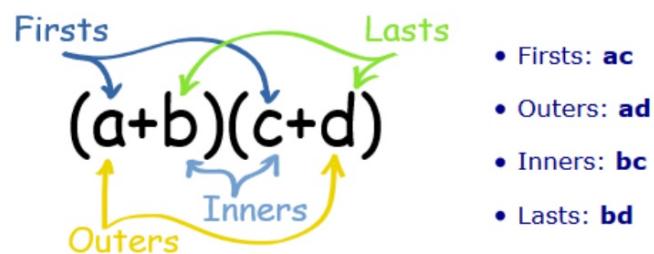
$$\begin{aligned} 2x(x + 3xy) &= 2x \cdot x + 2x \cdot 3xy \\ &= 2x^2 + 6x^2y \end{aligned}$$

2 term \times 1 terms (binomial times monomial)

Multiply each of the two terms by the single term, like this:

$$(x^2 - x) \cancel{3y} = 3x^2y - 3xy \quad \checkmark$$

It stands for "Firsts, Outers, Inners, Lasts":



It is the same when we multiply binomials!

Instead of Alice and Betty, let's just use **a** and **b**, and Charles and David can be **c** and **d**:

$$(a+b)(c+d) = ac + ad + bc + bd$$

2 terms \times 3 terms (binomial times trinomial)

"FOIL" won't work here, because there are more terms now. But just remember:

Multiply each term in the first polynomial by each term in the second polynomial

$$(x+a)(2x+3y-5) =$$
$$2x^2 + 3xy - 5x + 2ax + 3ay - 5a$$

Like Terms

And always remember to add [Like Terms](#) :

Example: $(x + 2y)(3x - 4y + 5)$

$$\begin{aligned}(x + 2y)(3x - 4y + 5) \\ = 3x^2 - 4xy + 5x + 6xy - 8y^2 + 10y \\ = 3x^2 + 2xy + 5x - 8y^2 + 10y\end{aligned}$$

Note: **-4xy** and **6xy** are added because they are Like Terms.

Also note: **6yx** means the same thing as **6xy**

Multiply out $(3x + 2)(4x - 5)$

A $12x^2 - 7x - 10$

B $12x^2 - 23x - 10$

C $12x^2 + 7x - 10$

D $12x^2 - 10$

What is the product of $(5x - 2)$ and $(2x + 7)$?

A $10x^2 + 31x + 14$

B $10x^2 + 39x - 14$

C $7x^2 + 31x - 14$

D $10x^2 + 31x - 14$

100

31

39

7

14

Multiply out $(x - 4)(3x - y + 3)$

A $3x^2 + 4y - 12$

B $3x^2 - 6xy - 12$

C $3x^2 - xy - 9x + 4y - 12$

D $3x^2 - xy - 9x - 4y - 12$

Unsolved

1

2

3

4

What is the product of $(3x - 4y)$ and $(-2x + 5y - 6)$?

A $-6x^2 + 7xy - 18x - 20y^2 + 24y$

B $-6x^2 + 23xy - 18x - 20y^2 + 24y$

C $6x^2 + 23xy - 18x - 20y^2 + 24y$

D $-6x^2 + 23xy - 18x + 20y^2 - 24y$

Next

Back

Help

Exit

What is the product of $(3a - 4b + 1)$ and $(2a + 5b - 3)$?

A $6a^2 + 20b^2 + 7ab - 7a + 17b - 3$

B $6a^2 - 20b^2 + 7ab - 7a + 17b - 3$

C $6a^2 - 20b^2 + 23ab - 7a + 17b - 3$

D $6a^2 - 20b^2 + 7ab - 7a - 7b - 3$

Mathematics

Math

Mathematics

Mathematics

Math

The Method

Choose one polynomial (the longest is a good choice) and then:

- multiply it by **the first term** of the other polynomial, writing the result down
- then multiply it by **the second term** of the other polynomial, writing the result under the matching terms from the first multiplication
- then multiply it by **the third term** of the other polynomial (if any) etc ...
- lastly, add up the columns.

Laying the work out neatly in columns is the key, like this:

$$(3x^2 + 2x - 8)(x + 5)$$
$$\begin{array}{r} x^3 \quad x^2 \quad x \\ 3x^2 \quad +2x \quad -8 \\ x \quad \quad \quad +5 \\ \hline 15x^3 \quad 15x^2 \quad +10x \quad -40 \\ 3x^3 \quad +2x^2 \quad -8x \\ \hline 3x^3 + 17x^2 + 2x - 40 \end{array}$$

Now add

More than One Variable

So far we have been multiplying polynomials with only one variable (**x**), but how do we handle polynomials with two or more variables (such as **x** and **y**)? What are the column headings?

Just ignore the columns in the question, write down the answers as they come, **always checking** to see if we could put an answer under a matching answer:

$$(x^2 + 2xz + z)(x + z)$$

Now add

$$\begin{array}{r} x^2 \quad +2xz \quad +z \\ \underline{x} \quad \quad \quad +z \\ \hline x^3 \quad xz + 2x^2z \quad x^2z + 2xz^2 \quad z^2 \\ \hline x^3 + xz + 3x^2z + 2xz^2 + z^2 \end{array}$$

Multiply out $(4x^2 - 3x + 5)(x - 4)$ using polynomial long multiplication.

A $4x^3 + 13x^2 + 17x - 20$

B $4x^3 - 19x^2 - 7x - 20$

C $4x^3 + 13x^2 - 7x - 20$

D $4x^3 - 19x^2 + 17x - 20$

$$\begin{array}{r} 4x^2 - 3x + 5 \\ \times x - 4 \\ \hline 4x^3 - 12x^2 + 20x \\ \hline 4x^3 - 19x^2 + 17x - 20 \end{array}$$

Multiply out $(3x^3 + 4x - 5)(2x^3 - 8x^2 + 2)$ using polynomial long multiplication.

A $5x^3 - 8x^2 + 4x - 3$

B $6x^6 - 24x^5 + 8x^4 - 36x^3 + 40x^2 + 8x - 10$

C $6x^6 + 24x^5 + 8x^4 - 36x^3 + 40x^2 + 8x - 10$

D $6x^6 + 24x^5 + 8x^4 + 28x^3 + 40x^2 + 8x - 10$

6x⁶ + 24x⁵ + 8x⁴ - 36x³ + 40x² + 8x - 10

$$\begin{array}{r} 6x^6 + 24x^5 + 8x^4 - 36x^3 + 40x^2 + 8x - 10 \\ \times 2x^3 - 8x^2 + 2 \\ \hline 12x^9 - 48x^8 + 16x^7 - 72x^6 + 160x^5 - 32x^4 + 16x^3 - 10 \\ \hline \end{array}$$

Multiply out $(5x^3 + 2x - 7)(2x - 3)$ using polynomial long multiplication.

A $10x^4 - 15x^3 + 4x^2 + 8x + 21$

B $10x^4 - 15x^3 + 4x^2 - 8x + 21$

C $10x^4 - 15x^3 + 4x^2 - 20x - 21$

D $10x^4 - 15x^3 + 4x^2 - 20x + 21$

$$\begin{array}{r} & 10x^4 \\ \underline{-} & 15x^3 \\ & 4x^2 \\ \underline{-} & 20x \\ & 21 \\ \hline & 10x^4 - 15x^3 + 4x^2 - 20x + 21 \end{array}$$

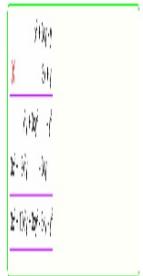
Multiply out $(x^2 + 3xy - y)(3x + y)$ using polynomial long multiplication.

A $3x^3 + 12x^2y + xy^2 - 3xy - y^2$

B $3x^3 + 10x^2y + 3xy^2 - 3xy + y^2$

C $3x^3 + 10x^2y + 3xy^2 - 3xy - y^2$

D $3x^3 + 8x^2y + 3xy^2 - 3xy - y^2$



Multiply out $(3y^2 + 5y - 7)(y + 4)$ using polynomial long multiplication.

A $3y^3 + 7y^2 - 13y - 28$

B $3y^3 + 7y^2 + 27y - 28$

C $3y^3 + 17y^2 + 13y - 28$

D $3y^3 + 17y^2 + 27y - 28$

Handwritten polynomial long multiplication of $(3y^2 + 5y - 7)(y + 4)$. The process is as follows:

- Set up the multiplication:
$$\begin{array}{r} 3y^2 + 5y - 7 \\ \times \quad y + 4 \\ \hline \end{array}$$
- Multiply $3y^2$ by y to get $3y^3$. Write it in the first column.
- Multiply $3y^2$ by 4 to get $12y^2$. Write it in the second column.
- Multiply $5y$ by y to get $5y^2$. Write it in the first column.
- Multiply $5y$ by 4 to get $20y$. Write it in the second column.
- Multiply -7 by y to get $-7y$. Write it in the first column.
- Multiply -7 by 4 to get -28 . Write it in the second column.
- Sum the columns:
$$\begin{array}{r} 3y^3 \\ 12y^2 \\ 5y^2 \\ 20y \\ -7y \\ \hline 3y^3 + 17y^2 + 27y - 28 \end{array}$$

Rational Expressions

An expression that is the ratio of two [polynomials](#) :

$$\frac{x^2 + 5}{x + 2}$$

x² + 5 ← numerator
x + 2 ← denominator

A Rational Expression

*because it is a "ratio"
of two polynomials*

It is just like a fraction, but with polynomials.

Other Examples:

$$\frac{x^3 + 2x - 1}{6x^2}$$

$$\frac{2x + 9}{x^4 - x^2}$$

Also

$$\frac{1}{2 - x^2}$$

The top polynomial is "1" which is fine.

Yes it is! As it could also be written:

$$2x^2 + 3$$

$$\frac{2x^2 + 3}{1}$$

But Not

$$\frac{2 - \sqrt{x}}{4 - x}$$

the top is not a polynomial (a square root of a variable is not allowed)

$$\frac{1 - x}{1 + \frac{1}{x}}$$

$1/x$ is not allowed in a polynomial

Proper vs Improper

Fractions can be <u>proper</u> or <u>improper</u> :		
Smaller → $\frac{3}{5}$	Larger → $\frac{9}{5}$	$2\frac{1}{3}$
Larger → $\frac{5}{3}$	Smaller → $\frac{5}{9}$	
Proper Fraction	Improper Fraction	Mixed Fraction

(There is nothing wrong with "Improper", it is just a different type)

Express $\frac{2x^5 + 4x^3}{8x^2}$ in its lowest terms ($x \neq 0$).

A $\frac{x(x^2 + 2)}{4}$

B $\frac{x^2(x^2 + 2)}{4x}$

C $\frac{2x(x^2 + 2)}{8}$

D $\frac{(x^2 + 2x)}{4}$

Dividing

Sometimes it is easy to divide a polynomial by splitting it at the "+" and "−" signs, like this (press play):

$$\frac{6x-3}{3} = \frac{2}{3} \cancel{\frac{6x}{3}} - \frac{1}{3} \cancel{3} = 2x-1$$

$$\frac{2x^2+2x}{x+1} = \frac{2x(x+1)}{\cancel{x+1}} = 2x$$

$$\frac{9x^2+12x+1}{3x}$$

$$\begin{aligned}& \frac{3x^2+4x+1}{3x} \\&= x + \frac{1}{3x}\end{aligned}$$

Divide $8x^2 + 12x - 3$ by $4x$

A $2x + 3 + \frac{3}{4x}$

B $2x + 3 - \frac{3}{4x}$

C $2x - 3 - \frac{3}{4x}$

D $8x^2 + 12x - \frac{3}{4x}$

Divide $(5x^2 - 10x)$ by $(x - 2)$, where $x \neq 2$

A $5x$

B $5x + 5$

C $5x - 5$

D $5x + 10$

Divide $(12x^3 + 9x^2 - 3)$ by $3x$

A $12x^2 + 3x - \frac{1}{x}$

B $4x^2 + 3x - \frac{1}{x}$

C $4x^2 + 6x - \frac{1}{x}$

D $4x^2 + 3x - 1$

Divide $(-12x^2 - 18x)$ by $(2x + 3)$

A $6x$

B $-12x$

C $\frac{-6x(2x - 3)}{2x + 3}$

D $-6x$

Statement:
 $(-12x^2 - 18x)$ divided by $(2x + 3)$ is $-6x$.
 $\frac{-12x^2 - 18x}{2x + 3} = \frac{-6x(2x + 3)}{2x + 3} = -6x$

Because we want to cancel $(2x + 3)$ in the numerator and the denominator.

$$\frac{-12x^2 - 18x}{2x + 3} = \frac{-6x(2x + 3)}{2x + 3} = -6x$$

Use the $(x - 1)$ structure and dividing by $(x - 1)$, this is valid.

Divide $(5y^3 - 10y - 15)$ by $-5y$

A $y^2 + 2 + \frac{3}{y}$

B $y^2 + 2 - \frac{3}{y}$

C $-y^2 + 2 + \frac{3}{y}$

D $-y^2 + 2 - \frac{3}{y}$

Divide $(6x^3 - 2x^2 - 15x + 5)$ by $(3x - 1)$

$$\mathbf{A} \quad 2x^2 + \frac{2x^2 + 15x - 5}{3x - 1}$$

$$B \quad 2x^2 - \frac{2x^2 + 15x - 5}{3x - 1}$$

$$C \ 2x^2 + 5$$

$$D \ 2x^2 - 5$$

Divide $(a^3 + b^3)$ by $(a + b)$

A $a^2 + b^2$

B $a^2 - b^2$

C $a^2 + ab + b^2$

D $a^2 - ab + b^2$

Conjugate

The conjugate is where we **change the sign in the middle** of two terms like this:

$$\begin{array}{c} 3x + 1 \\ \text{Conjugate: } 3x - 1 \end{array}$$

We only use it in expressions with **two terms**, called "binomials":

$$\begin{array}{c} 5y^3 - 3 \\ \diagup \diagdown \\ 2 \text{ terms} \end{array}$$

example of a binomial

Here are some more examples:

Expression		Its Conjugate
$x^2 - 3$	\Rightarrow	$x^2 + 3$
$a + b$	\Rightarrow	$a - b$
$a - b^3$	\Rightarrow	$a + b^3$

What is the result of multiplying $(3 - 2x)$ by its conjugate?

A $9 - 12x + 4x^2$

B $9 + 4x^2$

C $9 - 4x^2$

D 6

Ergebnis: 6
Richtig
Falsch
Falsch
Falsch
Falsch
Ergebnis: 6
Richtig

Special Binomial Products

Special Binomial Products

So when we multiply binomials we get ... Binomial Products!

And we will look at **three special cases** of multiplying binomials ... so they are **Special Binomial Products**.

1. Multiplying a Binomial by Itself

What happens when we square a binomial (in other words, multiply it by itself) .. ?

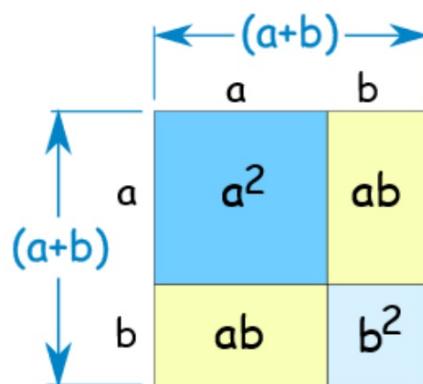
$$(a+b)^2 = (a+b)(a+b) = \dots ?$$

$$\begin{aligned}(a+b)(a+b) &= a^2 + ab + ab + b^2 \\ &= a^2 + 2ab + b^2\end{aligned}$$

The result:

$$(a+b)^2 = a^2 + 2ab + b^2$$

This illustration shows why it works:



2. Subtract Times Subtract

And what happens when we square a binomial with a **minus** inside?

$$(a-b)^2 = (a-b)(a-b) = \dots ?$$

$$\begin{aligned}(a-b)(a-b) &= a^2 - ab - ab + b^2 \\ &= a^2 - 2ab + b^2\end{aligned}$$

3. Add Times Subtract

And then there is one more special case ... what about $(a+b)$ times $(a-b)$?

$$(a+b)(a-b) = \dots ?$$

$$\begin{aligned}(a+b)(a-b) &= a^2 - ab + ab - b^2 \\ &= a^2 + 0 - b^2 = a^2 - b^2.\end{aligned}$$

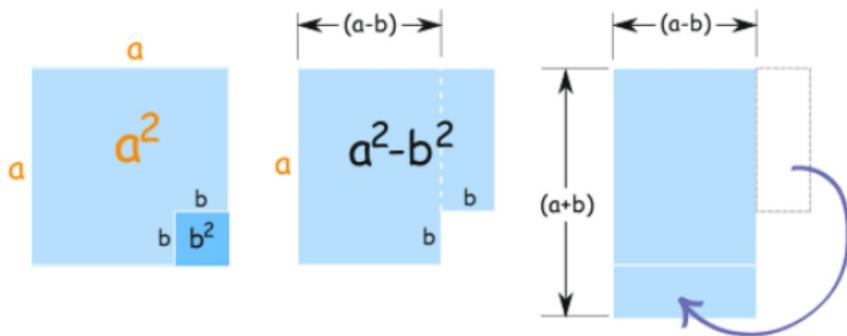
The result:

$$(a+b)(a-b) = a^2 - b^2$$

That was interesting! It ended up very simple.

And it is called the "**difference of two squares**" (the two squares are a^2 and b^2).

This illustration shows why it works:



$$a^2 - b^2 \quad \text{is equal to} \quad (a+b)(a-b)$$

Note: $(a-b)$ could be first and $(a+b)$ second:

$$(a-b)(a+b) = a^2 - b^2$$

The Three Cases

Here are the three results we just got:

$$\begin{aligned}(a+b)^2 &= a^2 + 2ab + b^2 \\ (a-b)^2 &= a^2 - 2ab + b^2 \\ (a+b)(a-b) &= a^2 - b^2\end{aligned}\quad \left.\begin{array}{l} \text{the "perfect square trinomials"} \\ \text{the "difference of squares"} \end{array}\right.$$

Remember those patterns, they will save you time and help you solve many algebra puzzles.

Using Them

So far we have just used "a" and "b", but they could be anything.

Example: $(y+1)^2$

We can use the $(a+b)^2$ case where "a" is y , and "b" is 1:

$$(y+1)^2 = (y)^2 + 2(y)(1) + (1)^2 = y^2 + 2y + 1$$

Example: $(3x-4)^2$

We can use the $(a-b)^2$ case where "a" is $3x$, and "b" is 4:

$$(3x-4)^2 = (3x)^2 - 2(3x)(4) + (4)^2 = 9x^2 - 24x + 16$$

Example: $(4y+2)(4y-2)$

We know the result is the difference of two squares, because:

$$(a+b)(a-b) = a^2 - b^2$$

so:

$$(4y+2)(4y-2) = (4y)^2 - (2)^2 = 16y^2 - 4$$

Solving Word Questions

With LOTS of examples!

In Algebra we often have word questions like:

Example: Sam and Alex play tennis.

On the weekend Sam played 4 more games than Alex did, and together they played 12 games.

How many games did Alex play?

How do we solve them?

The trick is to break the solution into two parts:

Turn the English into Algebra.

Then use Algebra to solve.

Turning English into Algebra

To turn the English into Algebra it helps to:

- Read the whole thing first
- Do a **sketch** if possible
- Assign **letters** for the values
- Find or work out **formulas**

You should also write down **what is actually being asked for**, so you know where you are going and when you have arrived!

Also look for key words:

When you see	Think
add, total, sum, increase, more, combined, together, plus, more than	+
minus, less, difference, fewer, decreased, reduced	-
multiplied, times, of, product, factor	×
divided, quotient, per, out of, ratio, ratio, percent, rate	÷
maximize or minimize	geometry formulas
Rate, speed	distance formulas
How long, days, hours, minutes, seconds	time

Thinking Clearly

Some wording can be tricky, making it hard to think "the right way around", such as:

Example: Sam has 2 dollars less than Alex. How do we write this as an equation?

- Let S = dollars Sam has
- Let A = dollars Alex has

Now ... is that: $S - 2 = A$

or should it be: $S = A - 2$

or should it be: $S = 2 - A$

The correct answer is

($S - 2 = A$ is a common mistake, as the question is written "Sam ... 2 less ... Alex")

Example: on our street there are twice as many dogs as cats. How do we write this as an equation?

- Let D = number of dogs
- Let C = number of cats

Now ... is that: $2D = C$

or should it be: $D = 2C$

Think carefully now!

The correct answer is

($2D = C$ is a common mistake, as the question is written "twice ... dogs ... cats")

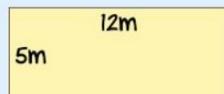
Examples

Let's start with a **really simple** example so we see how it's done:

Example: A rectangular garden is 12m by 5m, what is its area?

Turn the English into Algebra:

Sketch:



Letters:

- Use **w** for width of rectangle: **w = 12m**
- Use **h** for height of rectangle: **h = 5m**

Formula for Area of a Rectangle : $A = w \times h$

We are being asked for the Area.

Solve:

$$A = w \times h = 12 \times 5 = 60 \text{ m}^2$$

The area is **60 square meters**.

Now let's try the example from the top of the page:

Example: Sam and Alex play Tennis. On the weekend Sam played 4 more games than Alex did, and together they played 12 games. How many games did Alex play?

Turn the English into Algebra:

(Info)

• Use S for Sam's games

• Use A for Alex's games

We know that Sam played 4 more games than Alex, so $S = A + 4$

We know that together they played 12 games: $S + A = 12$

We are looking asking for how many games Alex played: A

Solve:

$$\text{Start with: } S + A = 12$$

$$A = A + 4, \text{ so we can: } \boxed{S + 4 + A = 12}$$

$$\text{Subtract } 4 \text{ from both sides: } \boxed{S + A = 8}$$

$$\text{Subtract } A \text{ from both sides: } \boxed{S = 8 - A}$$

$$\text{Replace } S \text{ with } A + 4 \text{ in the last equation: } \boxed{A + 4 = 8 - A}$$

$$\text{Add } A \text{ to both sides: } \boxed{2A = 4}$$

$$\text{Divide both sides by 2: } \boxed{A = 2}$$

With $A = 2$ we know that Alex played 2 games of tennis.

Click here to check if Alex played 4 more games than Sam, and if together they played 12 games. You!

A slightly harder example:

Example: Alex and Sam also build tables.
Together they make 10 tables in 12 days.

Alex working alone can make 10 in 30 days.

How long would it take Sam working alone to make 10 tables?

Example: A cube has a volume of 125 mm^3 , what is its surface area?

An example about Money:

Example: Joel works at the local pizza parlor. When he works overtime he earns $1\frac{1}{4}$ times the normal rate.

One week Joel worked for 40 hours at the normal rate of pay and also worked 12 hours overtime. If Joel earned \$660 altogether in that week, what is his normal rate of pay?

More about Money, with these two examples involving Compound Interest

Example: Alex puts \$2000 in the bank at an annual compound interest of 11%. How much will it be worth in 3 years?

Example: Roger deposited \$1,000 into a savings account. The money earned interest compounded annually at the same rate. After nine years Roger's deposit has grown to \$1,551.33

What was the annual rate of interest for the savings account?

$$P(1 + r)^t = F$$
$$1000(1 + r)^9 = 1551.33$$
$$(1 + r)^9 = \frac{1551.33}{1000}$$
$$(1 + r)^9 = 1.55133$$
$$1 + r = \sqrt[9]{1.55133}$$
$$1 + r = 1.05$$
$$r = 0.05$$

The solution shows that the annual rate of interest is 5%.

And an example of a [Ratio](#) question:

Example: At the start of the year the ratio of boys to girls in a class is 2 : 1

But now, half a year later, four boys have left the class and there are two new girls. The ratio of boys to girls is now 4 : 3

How many students are there altogether now?

A quiz has thirty questions whose answers can only be correct or incorrect.

A correct answer scores 8 points, but 3 points are deducted for every incorrect answer.

Gina did the quiz and scored a total of 152 points. How many questions did she get correct?

A 11

B 18

C 19

D 22

Copyright © The McGraw-Hill Companies, Inc.
All rights reserved. Any part of this page may be reproduced, stored in a retrieval system, or transmitted in whole or in part by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of The McGraw-Hill Companies, Inc.

Answers: 1. C 2. B 3. A 4. D 5. B 6. C 7. A 8. D 9. B 10. C 11. D 12. A 13. C 14. B 15. D 16. C 17. B 18. A 19. D 20. C 21. B 22. A 23. C 24. B 25. D 26. C 27. B 28. A 29. D 30. C

Copyright © The McGraw-Hill Companies, Inc.

The denominator of a fraction is 3 more than the numerator. If both the numerator and the denominator are increased by 4, the fraction becomes

$$\frac{4}{5}$$

What was the original fraction?

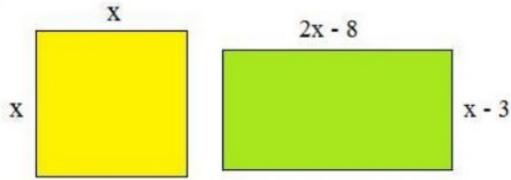
A $\frac{8}{11}$

B $\frac{5}{8}$

C $\frac{10}{13}$

D $\frac{7}{10}$

Let the original fraction be $\frac{x}{x+3}$.
Now, denominator is 3.
By adding 4 to both numerator and denominator, we get $\frac{x+4}{x+3+4} = \frac{x+4}{x+7}$.
According to the condition of the problem,
 $\frac{x+4}{x+7} = \frac{4}{5}$
 $5(x+4) = 4(x+7)$
 $5x+20 = 4x+28$
 $x = 8$
Hence, the original fraction is $\frac{8}{8+3} = \frac{8}{11}$.



The areas of the square and the rectangle are equal.
What is the value of x ?

A $x = 2$

B $x = 11$

C $x = 2$ or 12

D $x = 12$

$$\begin{aligned}
 \text{Area of the square} &= x^2 \text{ mm}^2 \\
 \text{Area of the rectangle} &= (2x - 8)(x - 3) \text{ mm}^2 \\
 \text{But areas are equal} \\
 \Rightarrow (2x - 8)(x - 3) &= x^2 \\
 \Rightarrow 2x^2 - 10x + 24 &= x^2 \\
 \Rightarrow x^2 - 10x + 24 &= 0 \\
 \Rightarrow (x - 6)(x - 4) &= 0 \\
 \text{But if } x = 4, \text{ the width and height of the rectangle would both be negative.} \\
 \text{Therefore } x = 6 \text{ is the only solution.}
 \end{aligned}$$

Directly Proportional and Inversely Proportional

Directly proportional: as one amount increases, another amount increases at the same rate.

The symbol for "directly proportional" is \propto
(Don't confuse it with the symbol for infinity ∞)

Example: you are paid \$20 an hour

How much you earn is **directly proportional** to how many hours you work

Work more hours, get more pay; in direct proportion.

This could be written:

Earnings \propto Hours worked

- If you work 2 hours you get paid \$40
- If you work 3 hours you get paid \$60
- etc ...

Constant of Proportionality

The "constant of proportionality" is the value that relates the two amounts

Example: you are paid \$20 an hour (continued)

The constant of proportionality is **20** because:

$$\text{Earnings} = 20 \times \text{Hours worked}$$

This can be written:

$$y = kx$$

Where **k** is the constant of proportionality

Example: y is directly proportional to x , and when $x=3$ then $y=15$.
What is the constant of proportionality?

They are directly proportional, so:

$$\Rightarrow y = kx$$

Put in what we know ($y=15$ and $x=3$):

$$\Rightarrow 15 = k \times 3$$

Solve (by dividing both sides by 3):

$$\Rightarrow 15/3 = k \times 3/3$$

$$\Rightarrow 5 = k \times 1$$

$$\Rightarrow k = 5$$

The constant of proportionality is 5:

$$y = 5x$$

When we know the constant of proportionality we can then answer other questions

Example: (continued)

What is the value of y when $x = 9$?

$$\rightarrow y = 5 \times 9 = 45$$

What is the value of x when $y = 2$?

$$\rightarrow 2 = 5x$$

$$\rightarrow x = 2/5 = 0.4$$

Example: 4 people can paint a fence in 3 hours.

How long will it take 6 people to paint it?

(Assume everyone works at the same rate)

It is an Inverse Proportion:

- As the number of people goes up, the painting time goes down.
- As the number of people goes down, the painting time goes up.

We can use:

$$t = k/n$$

title

- t = time taken
- n = number of people
- r = rate of work

4 people can paint a fence in 3 hours. How long will it take 6 people?

$\Rightarrow t = k/n$

$3 = k/4$

$\Rightarrow k = 12$

Show work

$\Rightarrow t = 12/n$

Answer: t

$\Rightarrow t = 12/6 = 2 \text{ hours}$

Get help with inverse proportion

How many people are needed to complete the job in half an hour?

$$t = k/n \Rightarrow n = k/t$$

So, it needs 12 people to complete the job in half an hour.

(Assuming they don't all get in each other's way!)

Proportional to ...

It is also possible to be proportional to a square, a cube, an exponential, or other function!

Example: Proportional to x^2

A stone is dropped from the top of a high tower.

The distance it falls is **proportional to the square** of the time of fall.

The stone falls 19.6 m after 2 seconds, how far does it fall after 3 seconds?

Where:

- d is the distance fallen and
- t is the time of fall

We can use:

$$d = kt^2 \quad \text{When } d = 19.6 \text{ then } t = 2$$

$$\rightarrow 19.6 = k \times 2^2$$

$$\rightarrow 19.6 = 4k$$

$$\rightarrow k = 4.9$$

So now we know:

$$d = 4.9t^2$$

And when $t = 3$:

$$\rightarrow d = 4.9 \times 3^2$$

$$\rightarrow d = 44.1$$

So it has fallen 44.1 m after 3 seconds.

Example: If a student reads a 300-page book in 6 days, in how many days will he read a 600-page book?

through applications in Discrete
mathematics and
Computer Science

$$\begin{array}{r} 300 \\ \times 2 \\ \hline 600 \end{array}$$

Example 2: If a seller makes a profit of 30 TL on the goods he sells for 200.00 TL, how much profit will he make when he sells the same goods at a discount for 180 TL?

İçin 20 TL'ye 30 TL
mucidi 10 TL
mucidi 10 TL
satın alır.

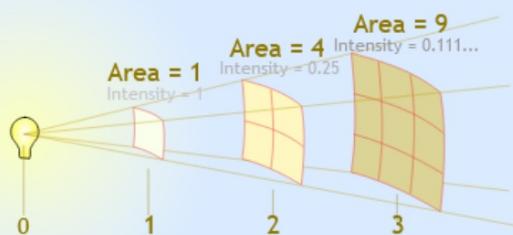
200 TL
200 TL
180 TL
180 TL
20 TL
20 TL
10 TL
10 TL

Inverse Square

Inverse Square: when one value **decreases** as the **square** of the other value.

Example: light and distance

The further away we are from a light, the less bright it is.



In fact the brightness decreases as the **square** of the distance. Because the light is spreading out in all directions.

So a brightness of "1" at 1 meter is only "0.25" at 2 meters (double the distance leads to a quarter of the brightness), and so on.

Example: If a car travels a certain distance in 5 hours when traveling at a speed of 40 km, how many hours will it take to travel the same distance when the speed is increased to 80 km?

http://tiny.cc/meyarw

http://tiny.cc/meyarw

http://tiny.cc/meyarw
})

Example 2: If four people can whitewash a house in 3 days, how many days can two people whitewash the same house?

Four people
can whitewash
a house in
3 days

Two people
can whitewash
a house in
x days

y is directly proportional to x, and $y = 24$ when $x = 4$.

What is the value of y when $x = 3$?

A 18

B 20

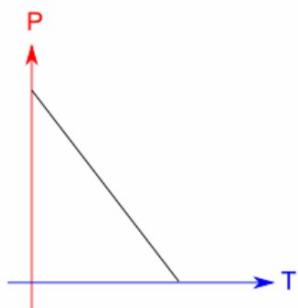
C 23

D 43

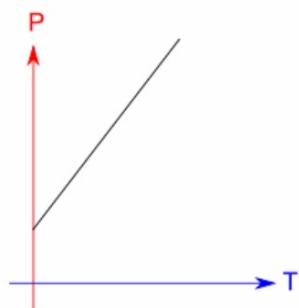
P is directly proportional to T.

Which of the following could be the graph connecting T and P?

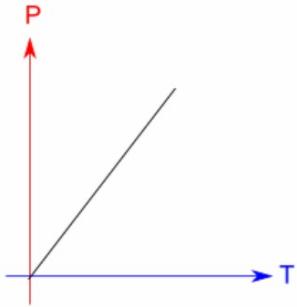
A



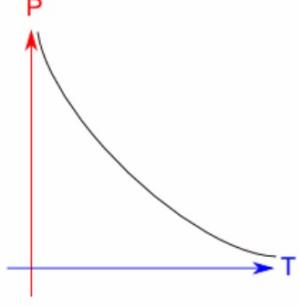
B



C



D



For direct proportionality, the graph must be a straight line with a positive slope.

y is inversely proportional to x, and $y = 8$ when $x = 3$

What is the value of y when $x = 4$?

A 6

B 7

C 9

D 10.67

Mathematics Test Item
Inverse proportionality
Grade 8
Version 1
Item 10
Version 1
Mathematics Test Item
Inverse proportionality
Grade 8
Version 1
Item 10
Version 1

The time (t days) required to build a house is inversely proportional to the number of builders (n), all working at the same rate.

If there are 6 builders, it takes 80 days to complete the house.

How many builders must be employed to build the house in just 16 days?

A 1.2 builders

B 25 builders

C 30 builders

D 36 builders

Ärkebispe
Avlastningsmedlem
Sekulärmedlem
Den religiösa delen i den sekulära
samhället
Sekulär
Sekular
Sekularist

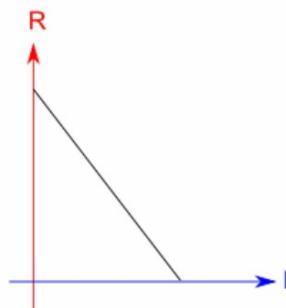
Se koden här
och se hemsidan
Avlastningsmedlem
Ärkebispe
Sekulär

Inte
Ärkebispe
Avlastningsmedlem
Sekulär
Sekular
Sekularist

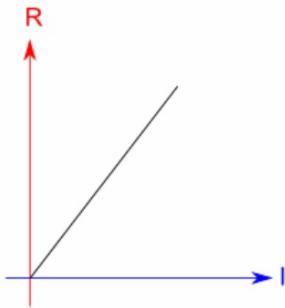
R is inversely proportional to I .

Which of the following could be the graph connecting I and R ?

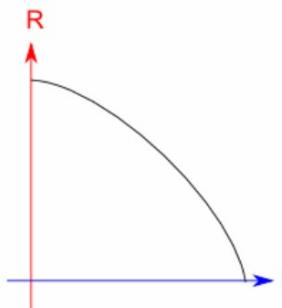
A



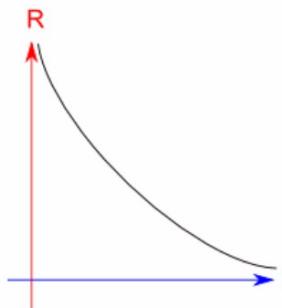
B



C



D



For these problems, begin with the available choices and eliminate them one by one. (This is called the process of elimination.)
Remember to always check your work.

John and Karen both insure their properties with the Budget Insurance Company. The cost of house insurance premiums with the Budget Insurance Company is directly proportional to the value of the property being insured.

John pays premiums of \$76 per month on his property valued at \$152,000. How much does Karen pay on her property valued at \$259,000?

A \$44.60

B \$129.50

C \$183.00

D \$205.50

The amount of sales tax on a new car is directly proportional to the purchase price of the car.

Victor bought a new car for \$30,000 and paid \$1,500 in sales tax.

Wesley bought a new car from the same dealer and paid \$2,375 sales tax.

How much did Wesley pay for his car?

A \$18,947

B \$30,875

C \$45,000

D \$47,500

The cost of insurance on a house is directly proportional to the area of the house. Alan has a 2,500 square-foot house and pays a monthly insurance premium of \$67.50.

Bella has a 3,800 square-foot house insured with the same company. What is her monthly premium?

A \$44.41

B \$80.50

C \$102.60

D \$120.60

100% of the students took
mathematics or physics or
both subjects in grade 10.

75% of the

students in grade 10

studied

mathematics

and physics.

53% of the students

The stopping distance (d meters) of a car is directly proportional to the square of its speed (s km/h) when the brakes are applied.

A car travelling at 50 km/h requires a stopping distance of 20 meters.

If the stopping distance is 51.2 meters, what is the speed of the car when the brakes are applied?

A 19.5 km/h

B 80 km/h

C 81.2 km/h

D 128 km/h

The stopping distance (d meters) of a car is directly proportional to the square of its speed (s km/h) when the brakes are applied.
 $\Rightarrow d = k \cdot s^2$ or $d = k s^2$ when k is the constant of proportionality.

$$d = 20 \text{ when } s = 50,$$
$$20 = k \cdot 50^2 \Rightarrow 20 = 2500k$$
$$\Rightarrow k = 20 \div 2500 = 0.008$$
$$\Rightarrow d = 0.008s^2$$

When $d = 51.2$,

$$51.2 = 0.008 \cdot s^2$$
$$\Rightarrow s^2 = 51.2 \div 0.008 = 6400$$
$$\Rightarrow s = \sqrt{6400} = 80$$

So, the car's speed was 80 km/h.

The acceleration of a particle is inversely proportional to the square of the time since it was fired.

If the acceleration of the particle 20 seconds after it was fired was 5 m/sec^2 , what was its acceleration 5 seconds later?

A 3.2 m/sec^2

B 4 m/sec^2

C 6.4 m/sec^2

D 20 m/sec^2

**NEXT
TOPIC**