

Tishk International University
Faculty of Administrative Sciences and
Economics

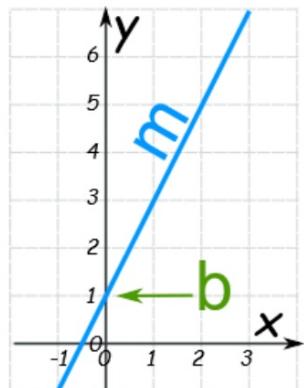
MATHEMATICS

FOR ECONOMICS AND BUSINESS

BUS 143
Part 3

I Grade- Fall

Assist. Prof. Dr. Hamdi Serin


Equation of a Straight Line

The equation of a straight line is usually written this way:

$$y = mx + b$$

(or "y = mx + c" in the UK [see below](#))

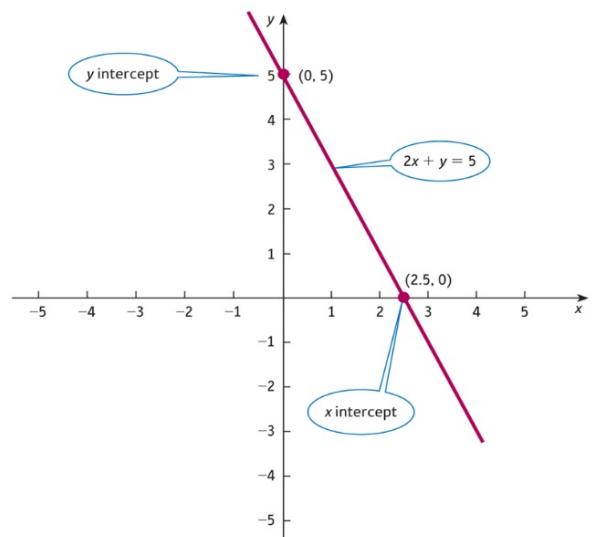
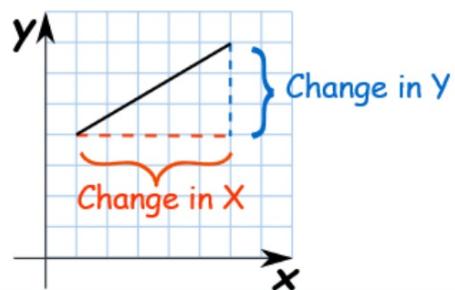
What does it stand for?

$$y = mx + b$$

m = Slope or Gradient
b = y when *x*=0
(see [Y Intercept](#))

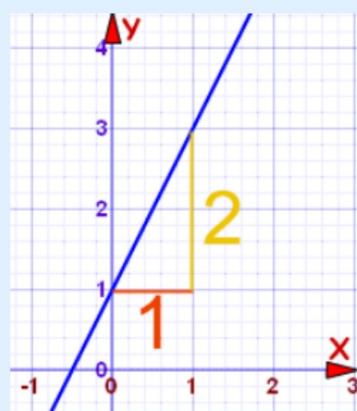
y = how far up

x = how far along



m = Slope or Gradient (how steep the line is)

b = value of *y* when *x*=0

How do you find "m" and "b"?


- **b** is easy: just see where the line crosses the Y axis.
- **m** (the Slope) needs some calculation:

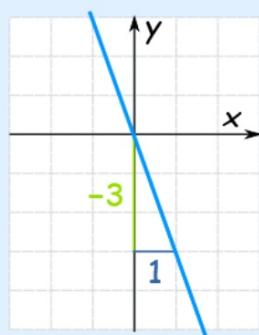
$$m = \frac{\text{Change in Y}}{\text{Change in X}}$$

Knowing this we can work out the equation of a straight line:

Example 1

$$m = \frac{2}{1} = 2$$

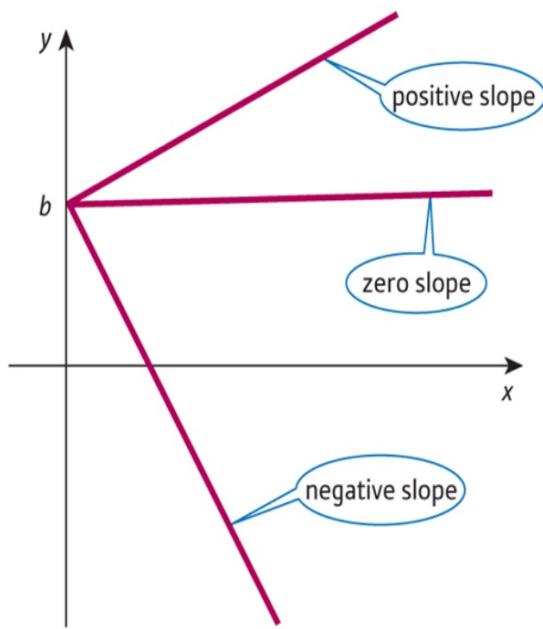
$b = 1$ (value of y when $x=0$)


$$\text{So: } y = 2x + 1$$

Positive or Negative Slope?

Going from left-to-right, the cyclist has to **Push** on a **Positive Slope**:

Example 2


$$m = \frac{-3}{1} = -3$$

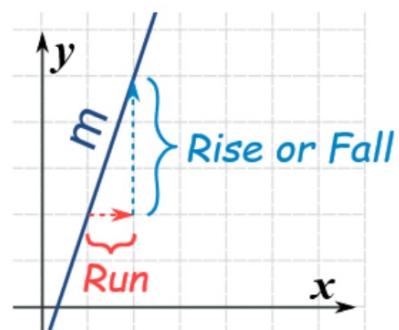
$$b = 0$$

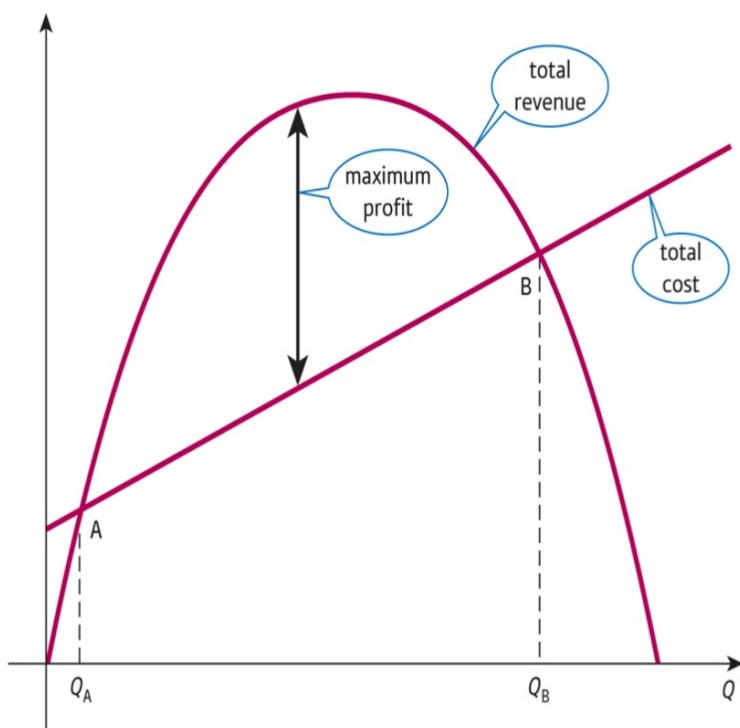
This gives us $y = -3x + 0$

We do not need the zero!

$$\text{So: } y = -3x$$

Rise and Run


Sometimes the words "rise" and "run" are used.

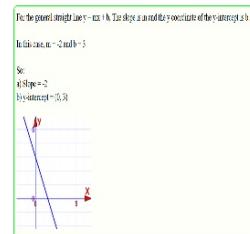

- Rise is how far up
- Run is how far along

And so the slope "m" is:

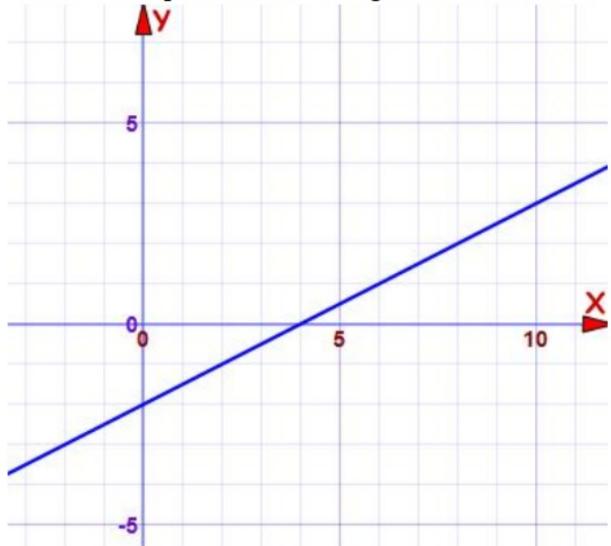
$$m = \frac{\text{rise}}{\text{run}}$$

You might find that easier to remember.

For the straight line $y = -2x + 3$, what are:


- a) the slope
- b) the y-intercept?

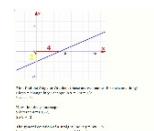
A a) Slope = 2
b) y-intercept = (0, -3)


B a) Slope = -2
b) y-intercept = (0, 3)

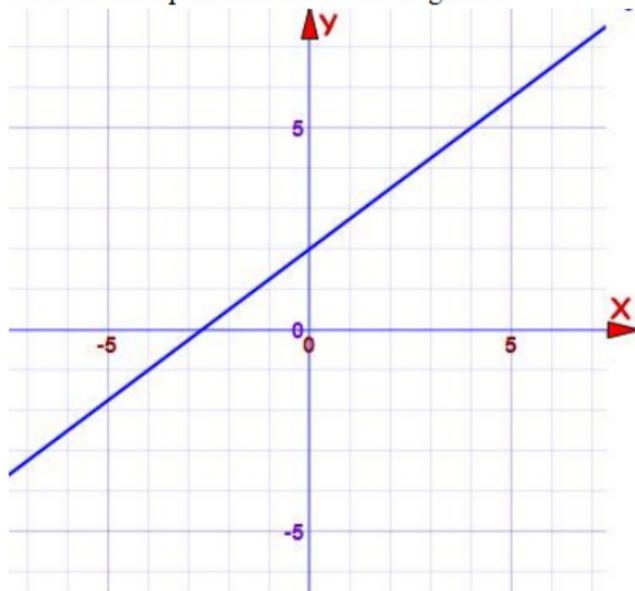
C a) Slope = 3
b) y-intercept = (0, -2)

D a) Slope = -3
b) y-intercept = (0, 2)

What is the equation of the straight line shown in the diagram?



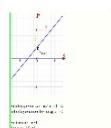
A $y = 2x - 2$


B $y = -2x + \frac{1}{2}$

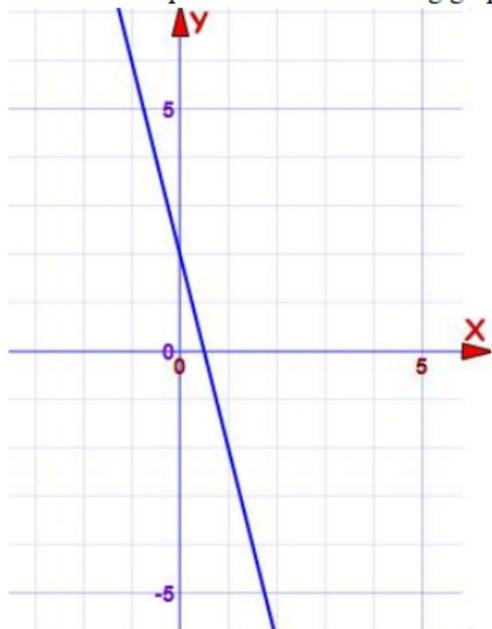
C $y = -(\frac{1}{2})x + 2$

D $y = (\frac{1}{2})x - 2$

What is the equation of the following line?



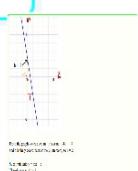
A $y = -1.33x + 2$


B $y = 1.33x + 2$

C $y = -0.75x + 2$

D $y = 0.75x + 2$

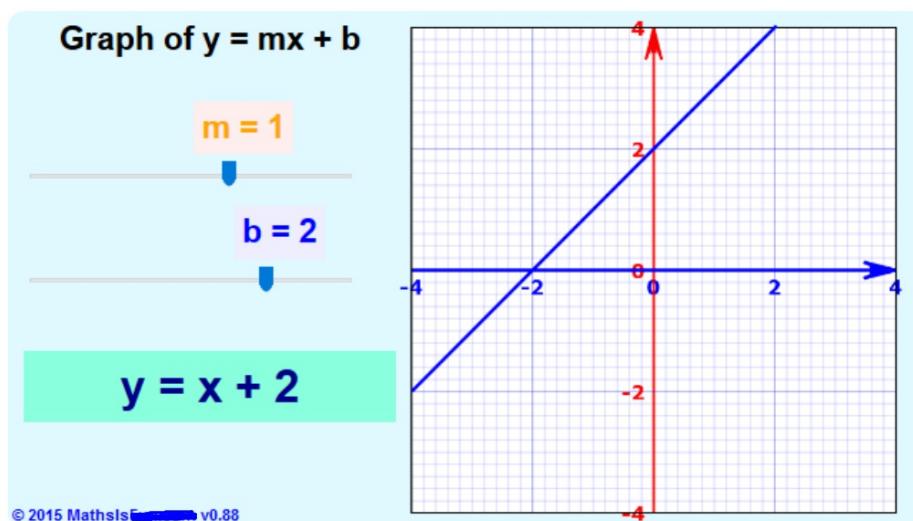
What is the equation of the following graph?



A $y = -4x + 2$

B $y = 4x + 2$

C $y = -0.25x + 2$


D $y = 0.25x + 2$

Explore the Properties of a Straight Line Graph

Move the **m** and **b** slider bars to explore the properties of a straight line graph. Look at

- The effect of changes in **m**
- The effect of changes in **b**
- The effect of a negative value of **m**
- The effect of a negative value of **b**
- How to create a horizontal line

For the straight line $x = 2y - 3$, what are:

- a) the slope
- b) the y-intercept?

A Slope = 2 and y-intercept = (0, -3)

B Slope = $\frac{1}{2}$ and y-intercept = (0, $1\frac{1}{2}$)

C Slope = $-\frac{1}{2}$ and y-intercept = (0, $1\frac{1}{2}$)

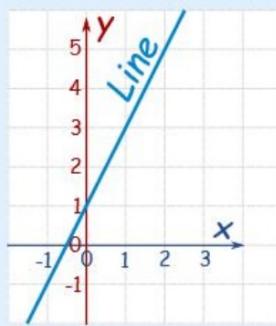
D Slope = $\frac{1}{2}$ and y-intercept = (0, $-1\frac{1}{2}$)

For straight line $x = 2y - 3$,
the slope is 2 and y-intercept is (-3).
The slope is 2.
The y-intercept is (-3).
Slope = $\frac{1}{2}$.
y-intercept = $1\frac{1}{2}$.
The slope is $-\frac{1}{2}$.
The y-intercept is $1\frac{1}{2}$.
Slope = $\frac{1}{2}$.
y-intercept = (-3).
Slope = $\frac{1}{2}$.
y-intercept = (-3).

Linear Equations

A **linear** equation is an equation for a straight **line**

These are all linear equations:


✓ $y = 2x + 1$

✓ $5x = 6 + 3y$

✓ $y/2 = 3 - x$

Let us look more closely at one example:

Example: $y = 2x + 1$ is a linear equation:

The graph of $y = 2x+1$ is a straight line

- When x increases, y increases **twice as fast**, so we need $2x$
- When x is 0, y is already 1. So **+1** is also needed
- And so: $y = 2x + 1$

Here are some example values:

x	$y = 2x + 1$
-1	$y = 2 \times (-1) + 1 = -1$
0	$y = 2 \times 0 + 1 = 1$
1	$y = 2 \times 1 + 1 = 3$
2	$y = 2 \times 2 + 1 = 5$

Check for yourself that those points are part of the line above!

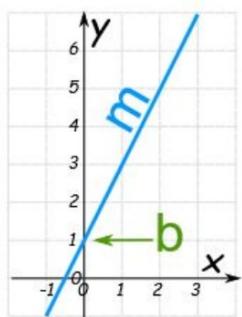
Different Forms

There are many ways of writing linear equations, but they usually have **constants** (like "2" or "c") and must have simple **variables** (like "x" or "y").

Examples: These are linear equations:

- ✓ $y = 3x - 6$
- ✓ $y - 2 = 3(x + 1)$
- ✓ $y + 2x - 2 = 0$
- ✓ $5x = 6$
- ✓ $y/2 = 3$

But the variables (like "x" or "y") in Linear Equations do **NOT** have:


- Exponents (like the 2 in x^2)
- Square roots, cube roots, etc

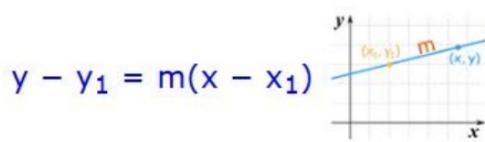
Examples: These are **NOT** linear equations:

- ✗ $y^2 - 2 = 0$
- ✗ $3\sqrt{x} - y = 6$
- ✗ $x^3/2 = 16$

Slope-Intercept Form

The most common form is the [slope-intercept equation of a straight line](#) :

$$y = mx + b$$


Slope (or Gradient) Y Intercept

Example: $y = 2x + 1$

- Slope: $m = 2$
- Intercept: $b = 1$

Point-Slope Form

Another common one is the [Point-Slope Form](#) of the equation of a straight line:

Example: $y - 3 = (\frac{1}{4})(x - 2)$

It is in the form $y - y_1 = m(x - x_1)$ where:

- $y_1 = 3$
- $m = \frac{1}{4}$
- $x_1 = 2$

General Form

And there is also the [General Form](#) of the equation of a straight line:

$$Ax + By + C = 0$$

(A and B cannot both be 0)

Example: $3x + 2y - 4 = 0$

It is in the form $Ax + By + C = 0$ where:

- A = 3
- B = 2
- C = -4

As a Function

Sometimes a linear equation is written as a function, with $f(x)$ instead of y :

$$y = 2x - 3$$

$$f(x) = 2x - 3$$

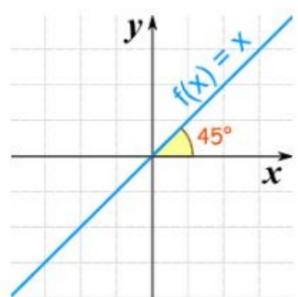
These are the same!

And functions are not always written using $f(x)$:

$$y = 2x - 3$$

$$w(u) = 2u - 3$$

$$h(z) = 2z - 3$$

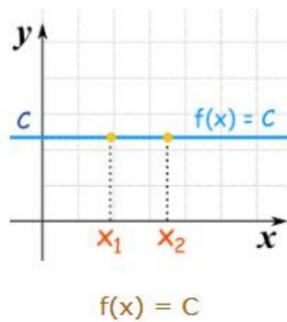

These are also the same!

The Identity Function

There is a special linear function called the "Identity Function":

$$f(x) = x$$

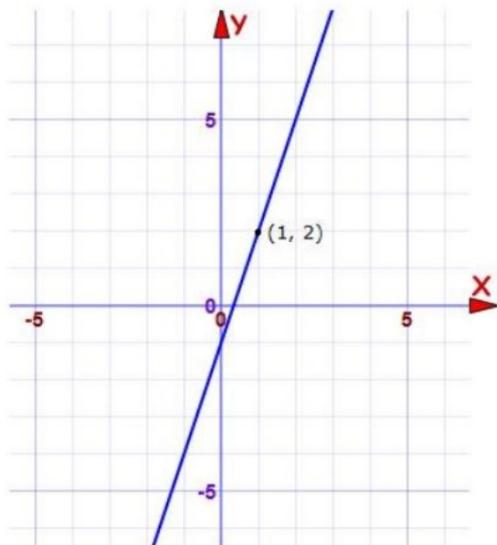
And here is its graph:


It makes a 45° (its slope is 1)

It is called "Identity" because what comes out is **identical** to what goes in:

In	Out
0	0
5	5
-2	-2
...etc	...etc

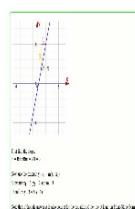
Constant Functions


Another special type of linear function is the Constant Function ... it is a horizontal line:

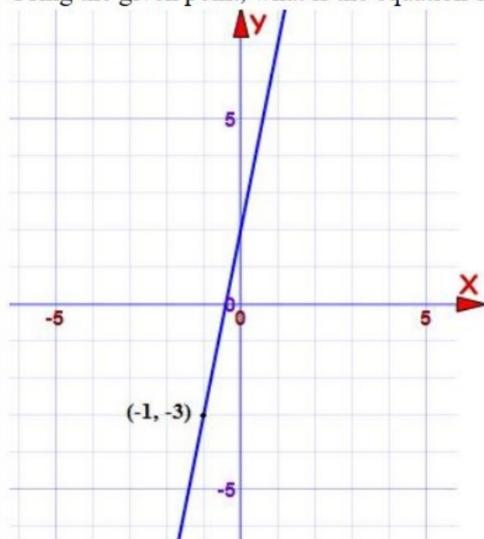
$$f(x) = c$$

No matter what value of "x", $f(x)$ is always equal to some constant value.

Using the given point, what is the equation of this straight line in Point-Slope Form?



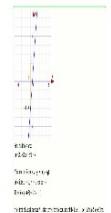
A $y = 3x - 1$


B $y - 2 = 1/3(x - 1)$

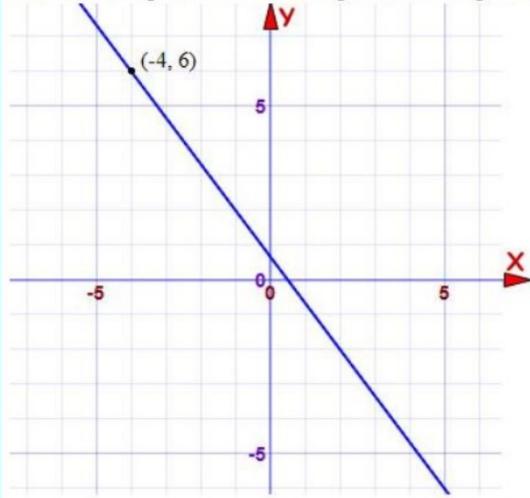
C $y - 2 = 3(x - 1)$

D $y - 1 = 3(x - 2)$

Using the given point, what is the equation of this straight line in Point-Slope Form?



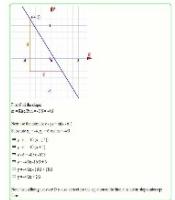
A $y = 5x + 2$


B $y - 3 = 5(x - (-1))$

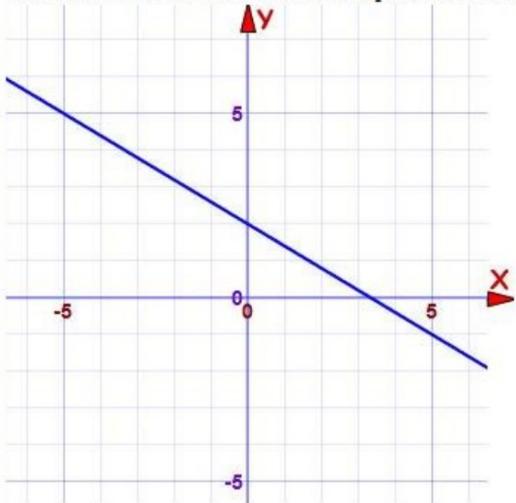
C $y - (-3) = 5(x - (-1))$

D $y - (-3) = 5(x - 1)$

What is the equation of this straight line in Slope-intercept Form?



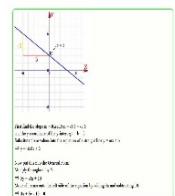
A $y = -4/3x + 2/3$


B $y = -4/3x + 32/3$

C $y = 4/3x + 2/3$

D $y - 6 = -4/3(x - (-4))$

What is the General Form of the equation of a straight line for this graph?



A $3x - 5y - 10 = 0$

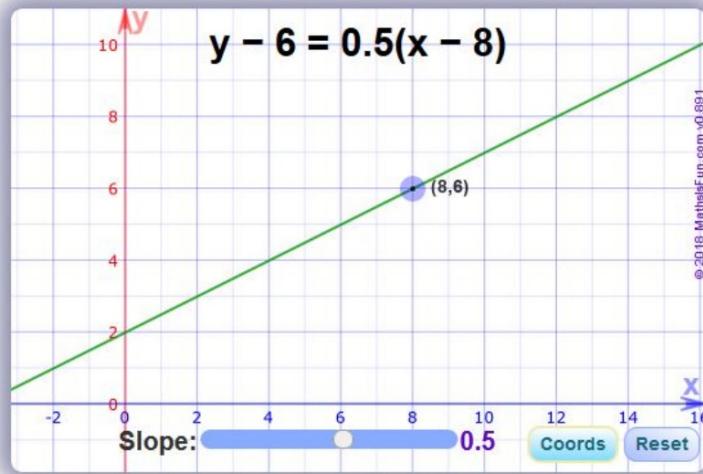
B $3x + 5y - 10 = 0$

C $3y - 5x - 6 = 0$

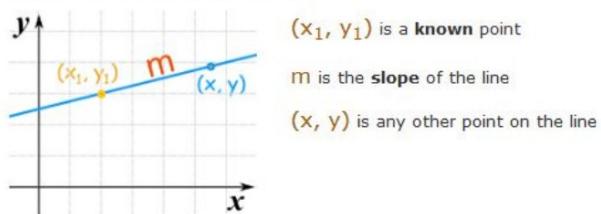
D $3y + 5x - 6 = 0$

Point-Slope Equation of a Line

The "point-slope" form of the equation of a straight line is:

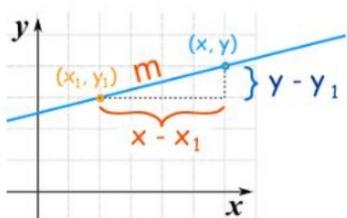

$$y - y_1 = m(x - x_1)$$

The equation is useful when we know:


- one point on the line: (x_1, y_1)
- and the slope of the line: m ,

and want to find other points on the line.

Have a play with it first (move the point, try different slopes):



What does it stand for?

Making sense of it

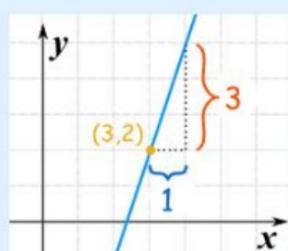
It is based on the slope:

$$\text{Slope } m = \frac{\text{change in } y}{\text{change in } x} = \frac{y - y_1}{x - x_1}$$

Starting with the slope:

$$\frac{y - y_1}{x - x_1} = m$$

we rearrange it like this:


$$\frac{y - y_1}{x - x_1} = m(x - x_1)$$

to get this:

$$y - y_1 = m(x - x_1)$$

Now let us see how to use it.

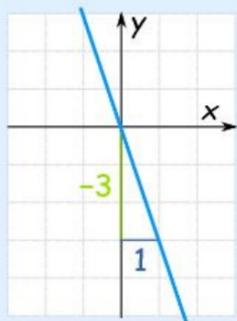
Example 1:

$$\text{slope "m" } = \frac{3}{1} = 3$$

$$y - y_1 = m(x - x_1)$$

We know m , and also know that $(x_1, y_1) = (3, 2)$, and so we have:

$$y - 2 = 3(x - 3)$$


That is a perfectly good answer, but we can simplify it a little:

$$y - 2 = 3x - 9$$

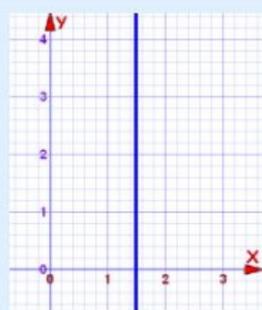
$$y = 3x - 9 + 2$$

$$y = 3x - 7$$

Example 2:

$$m = \frac{-3}{1} = -3$$

$$y - y_1 = m(x - x_1)$$


We can pick any point for (x_1, y_1) , so let's choose $(0, 0)$, and we have:

$$y - 0 = -3(x - 0)$$

Which can be simplified to:

$$y = -3x$$

Example 3: Vertical Line

What is the equation for a vertical line?

The slope is undefined!

In fact, this is a **special case**, and we use a different equation, like this:

$$x = 1.5$$

Every point on the line has **x** coordinate **1.5**,
that's why its equation is **$x = 1.5$**

What About $y = mx + b$?

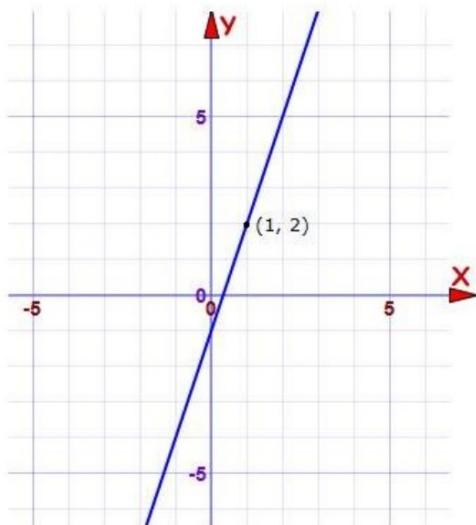
You may already be familiar with the " $y=mx+b$ " form (called the slope-intercept form of the equation of a line).

It is the same equation, in a different form!

The "b" value (called the y-intercept) is where the line crosses the y-axis.

So point (x_1, y_1) is actually at $(0, b)$

and the equation becomes:

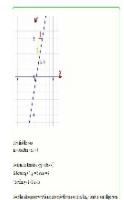

Start with $y - y_1 = m(x - x_1)$

(x_1, y_1) is actually $(0, b)$: $y - b = m(x - 0)$

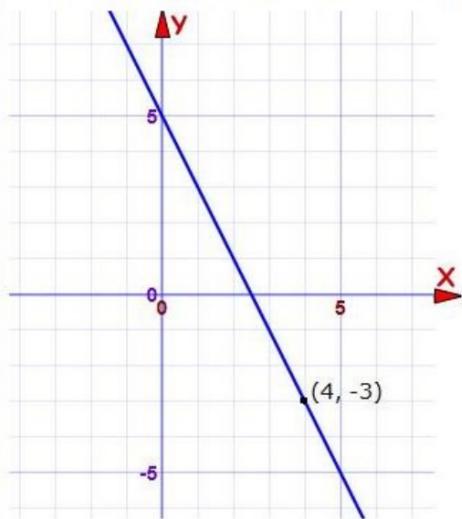
Which is: $y - b = mx$

Put b on other side: **$y = mx + b$**

Using the given point, what is the equation of this straight line in Point-Slope Form?



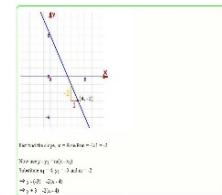
A $y = 3x - 1$


B $y - 2 = 1/3(x - 1)$

C $y - 2 = 3(x - 1)$

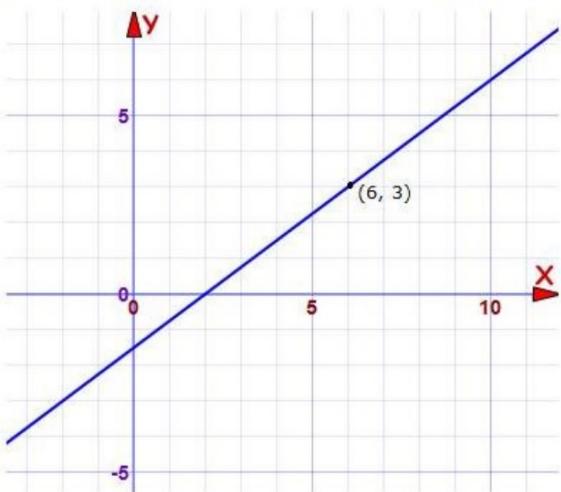
D $y - 1 = 3(x - 2)$

Using the given point, what is the Point-slope equation of this line?



A $y + 3 = -2(x - 4)$

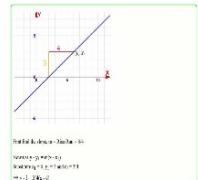
B $y - 3 = -2(x - 4)$


C $y + 3 = -1/2(x - 4)$

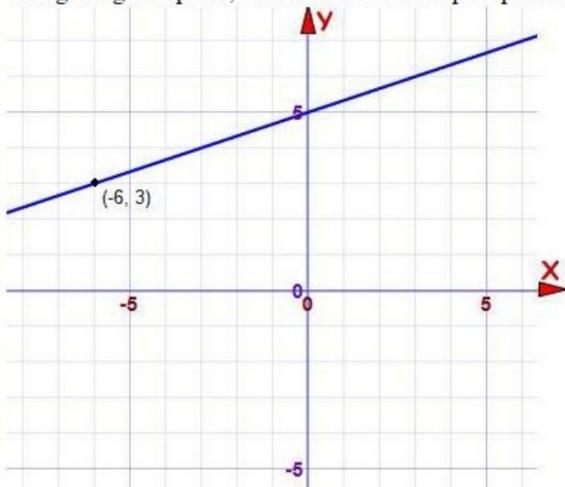
D $y - 3 = -1/2(x - 4)$

Given: $(0, 2)$, $(4, 0)$
Slope: $m = \frac{0-2}{4-0} = -\frac{1}{2}$
 $\rightarrow y - 2 = -\frac{1}{2}(x - 0)$
 $\rightarrow y + 2 = -\frac{1}{2}x$

Using the given point, what is the Point-slope equation of this line?



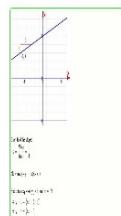
A $y - 3 = -4/3(x - 6)$


B $y - 3 = 4/3(x - 6)$

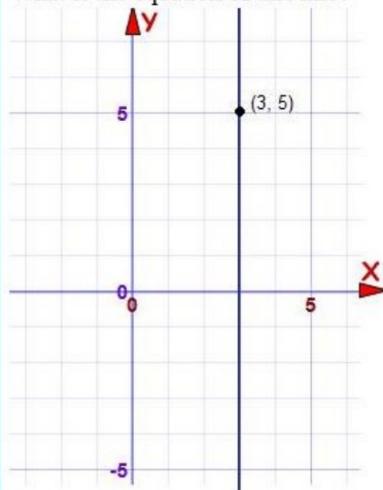
C $y - 3 = -3/4(x - 6)$

D $y - 3 = 3/4(x - 6)$

Using the given point, what is the Point-slope equation of this line?



A $y + 6 = \frac{1}{3}(x - 3)$

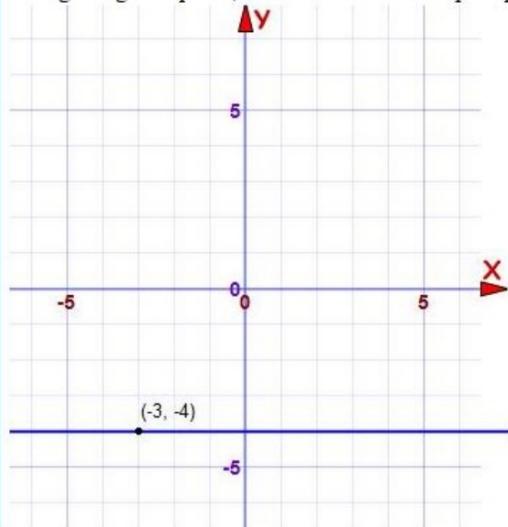

B $y - 3 = \frac{1}{3}(x - 6)$

C $y - 3 = 3(x + 6)$

D $y - 3 = \frac{1}{3}(x + 6)$

What is the equation of this line?

A $y - 5 = 1(x - 3)$


B $y - 5 = 0(x - 3)$

C $y = 3$

D $x = 3$

Incorrect
Feedback
Help

Using the given point, what is the Point-slope equation of this line?

A $y - 4 = 0(x + 3)$

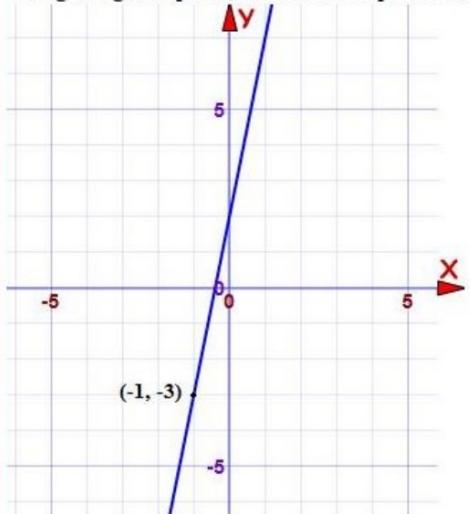
B $y + 4 = 0(x + 3)$

C $y + 4 = 0(x - 3)$

D $y - 4 = 0(x - 3)$

Point-slope form: $y - y_1 = m(x - x_1)$

Known: $(x_1, y_1) = (-3, -4)$

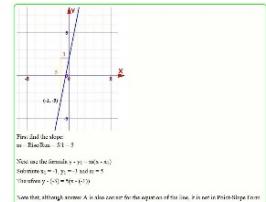

Known: $m = 0$

Therefore: $y - (-4) = 0(x - (-3))$

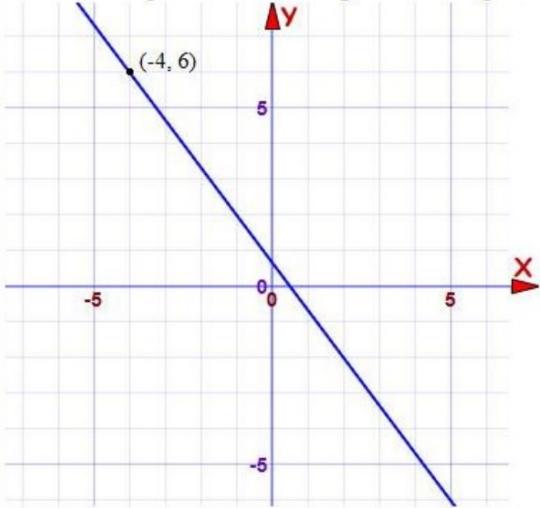
$\Rightarrow y + 4 = 0$

Vertical line: $x = -3$

Using the given point, what is the equation of this straight line in Point-Slope Form?



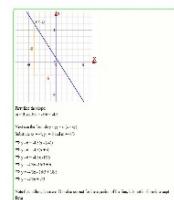
A $y = 5x + 2$


B $y - 3 = 5(x - (-1))$

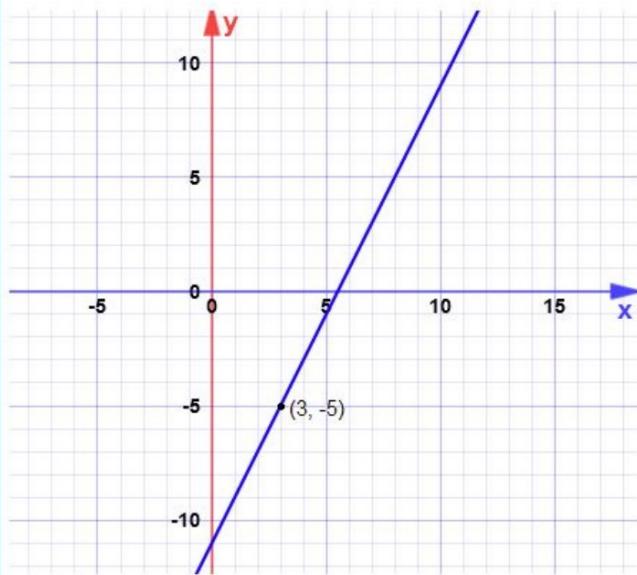
C $y - (-3) = 5(x - (-1))$

D $y - (-3) = 5(x - 1)$

What is the equation of this straight line in Slope-intercept Form?



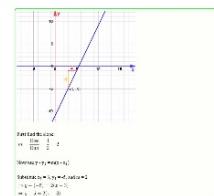
A $y = -4/3x + 2/3$


B $y = -4/3x + 32/3$

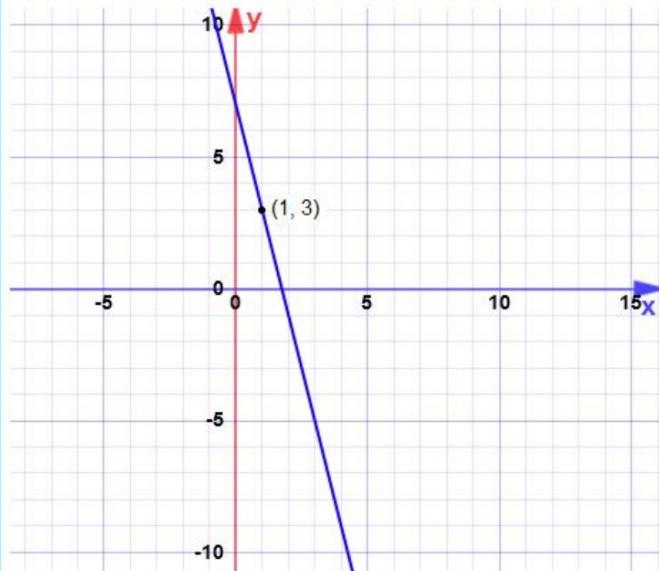
C $y = 4/3x + 2/3$

D $y - 6 = -4/3(x - (-4))$

Using the given point, what is the Point-slope equation of this line?



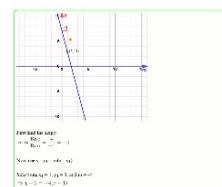
A $y + 5 = -2(x - 3)$


B $y + 5 = 2(x - 3)$

C $y - 5 = 2(x - 3)$

D $y + 5 = 2(x + 3)$

Using the given point, what is the Point-slope equation of this line?



A $y - 3 = -4(x + 1)$

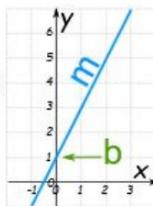
B $y - 3 = 4(x - 1)$

C $y - 3 = -4(x - 1)$

D $y + 3 = -4(x - 1)$

General Form of Equation of a Line

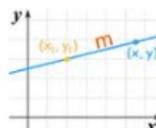
The "General Form" of the equation of a straight line is:


$$Ax + By + C = 0$$

A or B can be zero, but not both at the same time.

The General Form is not always the most useful form, and you may prefer to use:

The Slope-Intercept Form of the equation of a straight line:


$$y = mx + b$$

or

The Point-Slope Form of the equation of a straight line:

$$y - y_1 = m(x - x_1)$$

Example: Convert $4x - 2y - 5 = 0$ to Slope-Intercept Form

We are heading for:

$$y = mx + b$$

Start with: $4x - 2y - 5 = 0$

Move all except y to the right: $-2y = -4x + 5$

Divide all by (-2): $y = 2x - 5/2$

And we are done! (Note: $m = 2$ and $b = -5/2$)

The slope-intercept form of the equation of a straight line is $y = -\frac{2}{3}x + 2\frac{1}{3}$

What is the general form of the equation?

A $2x + 3y - 7 = 0$

B $2x - 3y - 7 = 0$

C $2x + 3y + 7 = 0$

D $2x - 3y + 7 = 0$

Pre-Algebra
Equation Solving
Multiplication
Division
Fractions
Percentages
Algebraic Expressions
Order of Operations
Equations

The point-slope form of the equation of a straight line is $y + 3 = -\frac{2}{7}(x - 5)$

What is the general form of the equation?

A $2x - 7y + 11 = 0$

B $2x - 7y + 31 = 0$

C $2x + 7y + 11 = 0$

D $2x + 7y + 31 = 0$

$$y + 3 = -\frac{2}{7}(x - 5)$$

Multiply both sides by 7

$$7y + 21 = 2x - 10$$

$2x - 7y + 31 = 0$

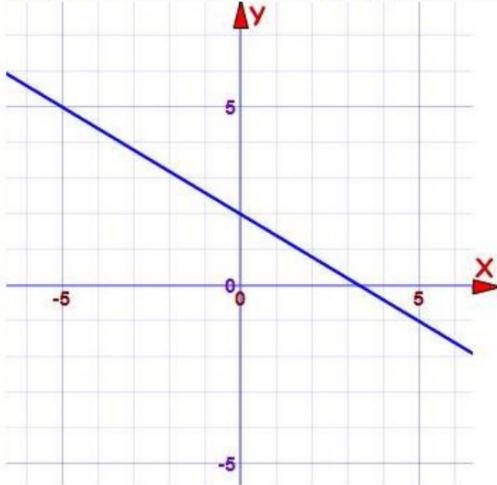
$2x + 7y + 31 = 0$

$2x + 7y + 11 = 0$

The General form of the equation of a straight line is $3x + 5y - 15 = 0$.

What is the slope-intercept form of the equation?

A $y = -\frac{3}{5}x - 3$

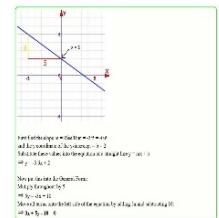

B $y = -\frac{3}{5}x + 3$

C $y = \frac{3}{5}x + 3$

D $y = \frac{3}{5}x - 3$

1. $3x + 5y - 15 = 0$
2. $5y = -3x + 15$
3. $y = -\frac{3}{5}x + 3$
4. $y = \frac{3}{5}x - 3$

What is the General Form of the equation of a straight line for this graph?



A $3x - 5y - 10 = 0$

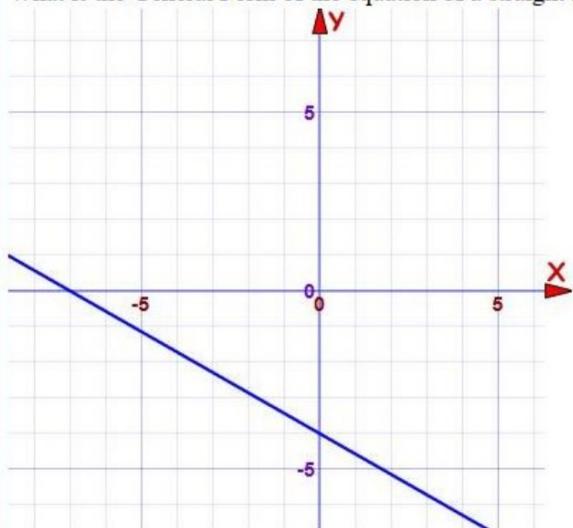
B $3x + 5y - 10 = 0$

C $3y - 5x - 6 = 0$

D $3y + 5x - 6 = 0$

Convert $7x - 3y + 2 = 0$ to Slope-Intercept Form

A $y = -7/3x - 2/3$

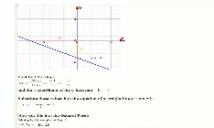

B $y = -7/3x + 2/3$

C $y = 7/3x - 2/3$

D $y = 7/3x + 2/3$

3x - 3y + 2 = 0
Add 3y to both sides:
 $\Rightarrow 3x + 2 = 3y$
 $\Rightarrow y = x + \frac{2}{3}$
Divide both sides by 3:
 $\Rightarrow y = \frac{1}{3}x + \frac{2}{3}$

What is the General Form of the equation of a straight line for this graph?



A $4x + 7y + 28 = 0$

B $4x + 7y - 28 = 0$

C $7x + 4y + 28 = 0$

D $7x + 4y - 28 = 0$

Convert $8x + 5y - 7 = 0$ to Slope-Intercept Form.

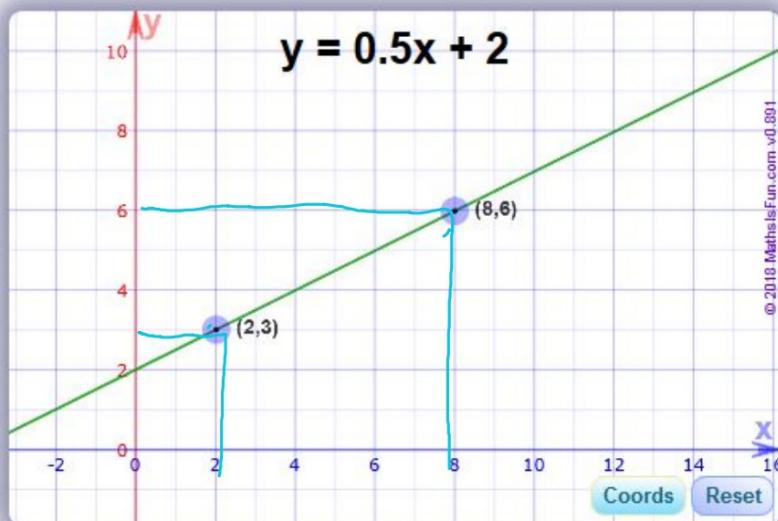
A $y = 1.6x + 1.4$

B $y = -1.6x + 1.4$

C $y = -1.6x - 1.4$

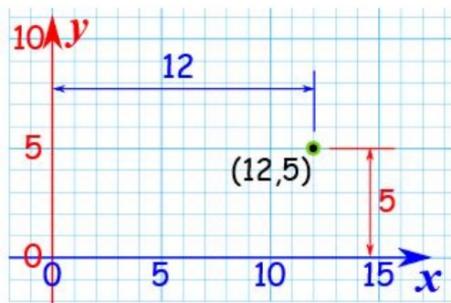
D $y = 1.6x - 1.4$

$$8x + 5y - 7 = 0$$


Subtract $8x$ and add 7 to both sides: $\Rightarrow 5y = -8x + 7$

Divide all terms by $5 \Rightarrow y = -1.6x + 1.4$

which is now in the slope-intercept form

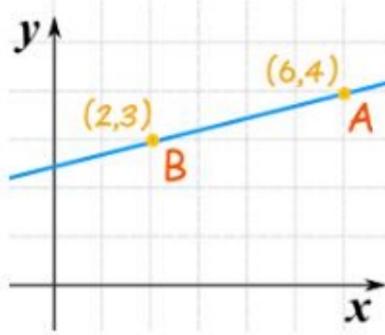

Equation of a Line from 2 Points

First, let's see it in action. Here are two points (you can drag them) and the equation of the line through them. Explanations follow.

The Points

We use [Cartesian Coordinates](#) to mark a point on a graph by **how far along** and **how far up** it is:

Example: The point **(12,5)** is 12 units along, and 5 units up

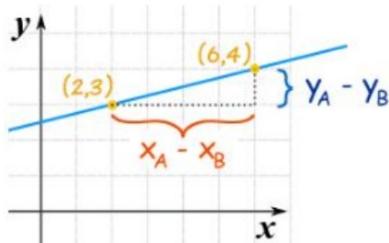

Steps

There are 3 steps to find the [Equation of the Straight Line](#) :

- 1. Find the slope of the line
- 2. Put the slope and one point into the "Point-Slope Formula"
- 3. Simplify

Step 1: Find the Slope (or Gradient) from 2 Points

What is the slope (or gradient) of this line?



We know two points:

- point "A" is (6, 4) (at x is 6, y is 4)
- point "B" is (2, 3) (at x is 2, y is 3)

The slope is the **change in height** divided by the **change in horizontal distance**.

Looking at this diagram ...

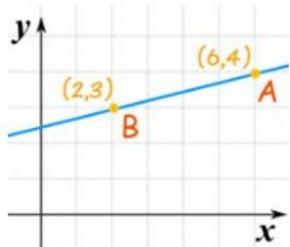
$$\text{Slope } m = \frac{\text{change in } y}{\text{change in } x} = \frac{Y_A - Y_B}{X_A - X_B}$$

In other words, we:

- subtract the Y values,
- subtract the X values
- then divide

Like this:

$$m = \frac{\text{change in } y}{\text{change in } x} = \frac{4-3}{6-2} = \frac{1}{4} = 0.25$$


It doesn't matter which point comes first, it still works out the same. Try swapping the points:

$$m = \frac{\text{change in } y}{\text{change in } x} = \frac{3-4}{2-6} = \frac{-1}{-4} = 0.25$$

Same answer.

Step 2: The "Point-Slope Formula"

Now put that **slope** and **one point** into the "Point-Slope Formula"

Start with the ["point-slope" formula](#) (x_1 and y_1 are the coordinates of a point on the line):

$$y - y_1 = m(x - x_1)$$

We can choose **any point** on the line for x_1 and y_1 , so let's just use point (2, 3):

$$y - 3 = m(x - 2)$$

We already calculated the slope "m":

$$m = \frac{\text{change in } y}{\text{change in } x} = \frac{4-3}{6-2} = \frac{1}{4}$$

And we have:

$$y - 3 = \frac{1}{4}(x - 2)$$

That is an answer, but we can simplify it further.

Step 3: Simplify

$$\text{Start with: } y - 3 = \frac{1}{4}(x - 2)$$

$$\text{Multiply } \frac{1}{4} \text{ and } (x-2): y - 3 = \frac{x}{4} - \frac{2}{4}$$

$$\text{Add 3 to both sides: } y = \frac{x}{4} - \frac{2}{4} + 3$$

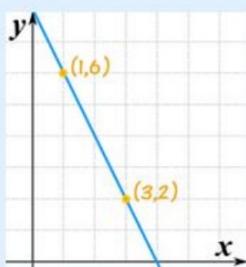
$$\text{Simplify: } y = \frac{x}{4} + \frac{5}{2}$$

And we get:

$$y = \frac{x}{4} + \frac{5}{2}$$

Which is now in the [Slope-Intercept \(\$y = mx + b\$ \)](#) form.

Check It!


Let us confirm by testing with the second point (6,4):

$$y = x/4 + 5/2 = 6/4 + 2.5 = 1.5 + 2.5 = 4$$

Yes, when $x=6$ then $y=4$, so it works!

Another Example

Example: What is the equation of this line?

Start with the point-slope formula :

$$y - y_1 = m(x - x_1)$$

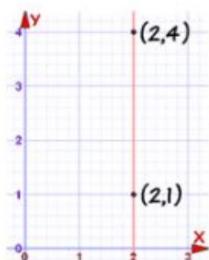
Put in these values:

- $x_1 = 1$
- $y_1 = 6$
- $m = (2-6)/(3-1) = -4/2 = -2$

And we get:

$$y - 6 = -2(x - 1)$$

Simplify to Slope-Intercept ($y = mx + b$) form:


$$y - 6 = -2x + 2$$

$$y = -2x + 8$$

DONE!

The Big Exception

The previous method works nicely except for one particular case: a **vertical line**:

A vertical line's gradient is undefined (because [we cannot divide by 0](#)):

$$m = \frac{y_A - y_B}{x_A - x_B} = \frac{4 - 1}{2 - 2} = \frac{3}{0} = \text{undefined}$$

But there is still a way of writing the equation: use $x =$ instead of $y =$, like this:

$$x = 2$$

What is the equation of the straight line that passes through the points $(-2, 5)$ and $(3, -5)$?

$$A \quad y = -2x + 1$$

$$B \quad y = -2x + 9$$

$$C \quad y = 2x + 9$$

$$D \quad y = 2x + 1$$

$$\text{Im}(\text{erfc}(z)) = \frac{1}{2} \text{erfc}(-A(z)) \text{erfc}(z)$$

198

ANSWER

卷之三

What is the equation of the straight line that passes through the points (1, -1) and (8, 1)?

A $y = -\frac{2}{7}x - \frac{5}{7}$

B $y = -\frac{2}{7}x + \frac{9}{7}$

C $y = \frac{2}{7}x + \frac{5}{7}$

D $y = \frac{2}{7}x - \frac{9}{7}$

First find the slope using $m = \frac{y_2 - y_1}{x_2 - x_1}$ where $x_1 = 1, y_1 = -1, x_2 = 8$ and $y_2 = 1$
 $m = \frac{1 - (-1)}{8 - 1} = \frac{2}{7}$

Now use $y - y_1 = m(x - x_1)$ to find the equation of the line.

$$\begin{aligned}y - (-1) &= \frac{2}{7}(x - 1) \\y + 1 &= \frac{2}{7}x - \frac{2}{7} \\y &= \frac{2}{7}x - \frac{2}{7} - 1 \\y &= \frac{2}{7}x - \frac{9}{7}\end{aligned}$$

What is the slope of the straight line passing through the points $(-2, 7)$ and $(3, 10)$?

A $\frac{1}{3}$

B $\frac{3}{5}$

C $\frac{5}{3}$

D 3

The slope of the line passing through (x_1, y_1) and (x_2, y_2) is given by

$$\frac{y_2 - y_1}{x_2 - x_1}$$

Substituting $x_1 = -2, y_1 = 7, x_2 = 3$ and $y_2 = 10$

So,

$$\text{Slope} = \frac{10 - 7}{3 - (-2)} = \frac{3}{5}$$

What is the slope of the straight line passing through the points $(3, -1)$ and $(9, 2)$?

A $-\frac{1}{2}$

B $-\frac{1}{6}$

C $\frac{1}{6}$

D $\frac{1}{2}$

The slope of the line passing through (x_1, y_1) and (x_2, y_2) is given by:

$$\frac{y_2 - y_1}{x_2 - x_1}$$

Substitute $x_1 = 3$, $y_1 = -1$, $x_2 = 9$ and $y_2 = 2$

Then

$$\text{Slope} = \frac{2 - (-1)}{9 - 3} = \frac{3}{6} = \frac{1}{2}$$

What is the equation of the straight line that passes through the points (4, -2) and (7, 6)?

A $y = \frac{8}{3}x - \frac{38}{3}$

B $y = \frac{8}{3}x - \frac{26}{3}$

C $y = -\frac{8}{3}x + \frac{38}{3}$

D $y = -\frac{8}{3}x + \frac{26}{3}$

Find the equation of the line that passes through the points (4, -2) and (7, 6).

$y = \frac{8}{3}x - \frac{38}{3}$

For any point (x, y) on the line, the following equation must be true:

$$y = \frac{8}{3}x - \frac{38}{3}$$

Substituting $x = 4$ and $y = -2$ into the equation, we get:

$$-2 = \frac{8}{3}(4) - \frac{38}{3}$$

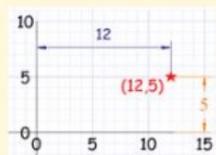
Subtracting $\frac{32}{3}$ from both sides:

$$-2 - \frac{32}{3} = -\frac{38}{3}$$

Multiplying both sides by 3:

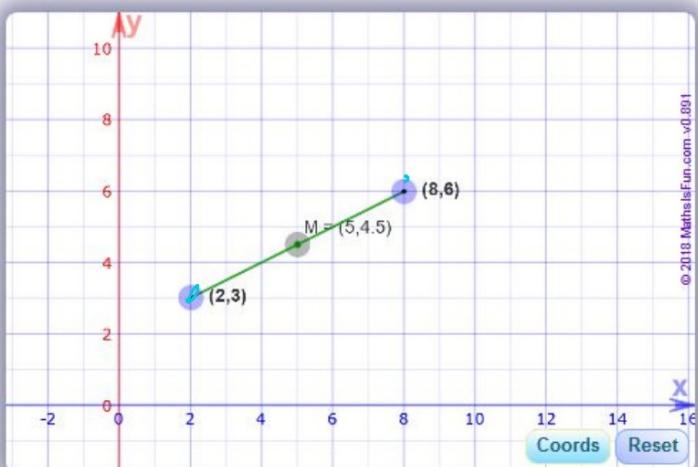
$$-6 - 32 = -38$$

Combining like terms:


$$-38 = -38$$

Therefore, the equation of the line is $y = \frac{8}{3}x - \frac{38}{3}$.

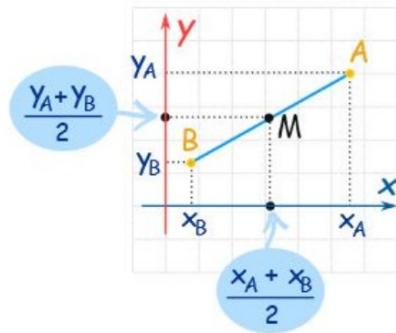
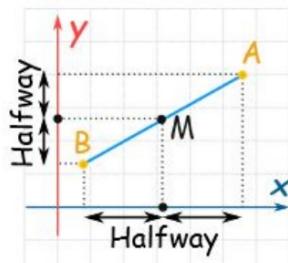
Midpoint of a Line Segment


Coordinate Point

We can use [Cartesian Coordinates](#) to locate a [point](#) by **how far along** and **how far up** it is:

Here the point **(12,5)** is 12 units along, and 5 units up

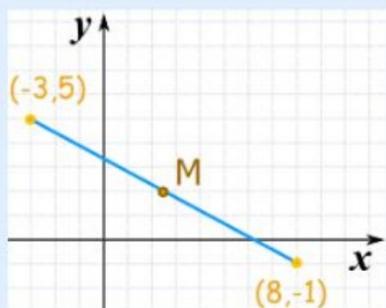
And when we know **both end points** of a [line segment](#) we can find the **midpoint "M"** (try dragging the blue circles):



Midpoint of a Line Segment

The midpoint is **halfway** between the two end points:

- Its **x value** is halfway between the two x values
- Its **y value** is halfway between the two y values

To calculate it:


- Add both "x" coordinates, divide by 2
- Add both "y" coordinates, divide by 2

As a formula:

$$M = \left(\frac{x_A+x_B}{2}, \frac{y_A+y_B}{2} \right)$$

Example: What is the midpoint here?

Use the formula:

$$M = \left(\frac{x_A+x_B}{2}, \frac{y_A+y_B}{2} \right)$$

$$M = \left(\frac{(-3)+8}{2}, \frac{5+(-1)}{2} \right)$$

$$M = (5/2, 4/2)$$

$$M = (2.5, 2)$$

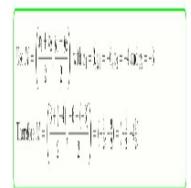
What is the midpoint of the straight line segment joining the points $(-2, 5)$ and $(6, -1)$?

A $(2, 2)$

B $(-4, 2)$

C $(2, 3)$

D $(-4, 3)$


What is the midpoint of the straight line segment joining the points $(3, -6)$ and $(-4, -3)$?

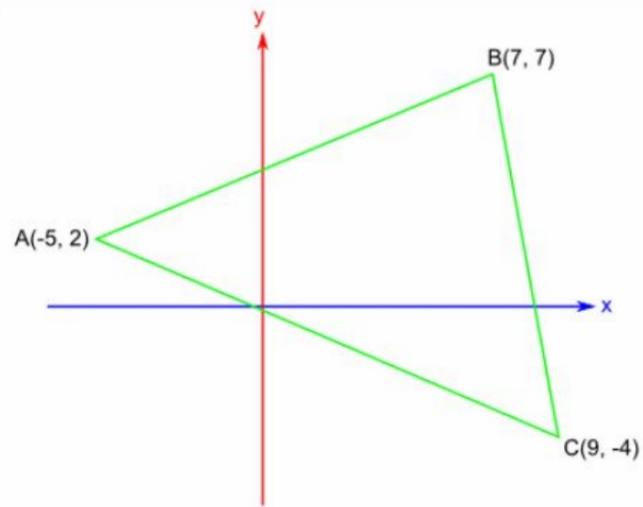
A $(3\frac{1}{2}, -4\frac{1}{2})$

B $(3\frac{1}{2}, -1\frac{1}{2})$

C $(-\frac{1}{2}, -1\frac{1}{2})$

D $(-\frac{1}{2}, -4\frac{1}{2})$

What is the midpoint of the straight line segment joining the points $(-2, 9)$ and $(3, -2)$?


A $(\frac{1}{2}, 4\frac{1}{2})$

B $(-\frac{1}{2}, 3\frac{1}{2})$

C $(\frac{1}{2}, 3\frac{1}{2})$

D $(-\frac{1}{2}, 4\frac{1}{2})$

$$\text{Mid} = \left(\frac{-2+3}{2}, \frac{9+(-2)}{2} \right) = \left(\frac{1}{2}, \frac{7}{2} \right) = \left(\frac{1}{2}, 3\frac{1}{2} \right)$$

What is the midpoint of BC?

A $(8, 1\frac{1}{2})$


B $(-1, 1\frac{1}{2})$

C $(2, -1)$

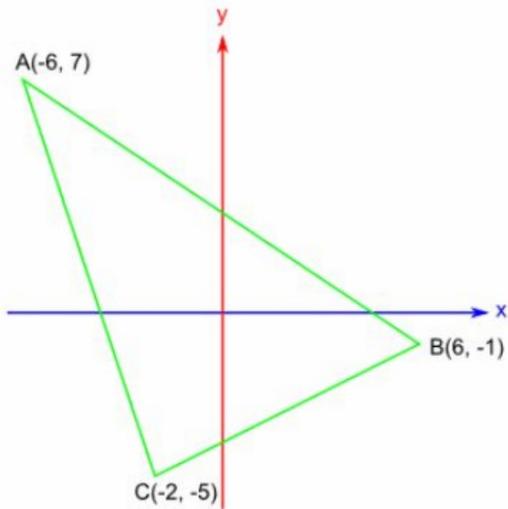
D $(8, 5\frac{1}{2})$

$$\|y\| = \sqrt{\frac{(y_1 - y_2)^2}{1^2 + 1^2}} = \sqrt{(7 - (-4))^2} = \sqrt{121} = 11$$

$$\|x\| = \sqrt{\frac{(x_1 - x_2)^2}{1^2 + 1^2}} = \sqrt{(9 - 7)^2} = \sqrt{4} = 2$$

What is the midpoint of CA?

A $(1, 4\frac{1}{2})$


B $(7, -1)$

C $(2, -3)$

D $(2, -1)$

$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)$$

$$M = \left(\frac{4 + 9}{2}, \frac{-3 + 2}{2} \right) = \left(\frac{13}{2}, -\frac{1}{2} \right)$$

What is the midpoint of AC?

A $(-2, 1)$ B $(-4, 1)$
 C $(-4, 6)$ D $(0, 3)$

1. $\frac{1}{2}(a+b)$
 If $\frac{1}{2}(a+b)$ is a point, then a and b are points.
 If a and b are points, then $\frac{1}{2}(a+b)$ is a point.
 If a and b are points, then $\frac{1}{2}(a+b)$ is a point.

**NEXT
TOPIC**