Tishk International University
: Faculty of Applied Science
~N Information Technology Department

Control Structures &
User-defined Functions

Lecture 5

Fall 2025 Web Programming

Course Code: IT349
Grade 3

Islam Abdulazeez
islam.abdulaziz@tiu.edu.iq

October 29, 2025

» Control Structures

» Selection Statements
» |teration (Looping)

» Arrays in PHP

» Array Functions in PHP

» User-defined Functions

October 29, 2025 P1

Learning Outcomes

= At the end of today’s session, you will be able to:

v" Explain control structures and functions in PHP.
v" Use selection and looping statements.
v Manipulate arrays with PHP functions.

v Create user-defined functions.

October 29, 2025 P2

Control Structures

* Control Structures are programming constructs that determine the flow of execution
of instructions in a program.

 They allow the program to make decisions, repeat actions, and control which
statements are executed based on certain conditions.

* Generally, a program is executed sequentially, line by line, and a control structure

allows you to alter that flow, usually depending on certain conditions.

October 29, 2025 P3

Control Structures

1. Sequential: Executes statements in order, one after another.

<?php

Sname = "Renas";

Sage = 21;

echo "Name: " . Sname . "
";

echo "Age: " . Sage . "
";

echo "Welcome to PHP programming!”;

>

October 29, 2025 P4

Control Structures

2. Selection (Decision): Allows a program to choose different actions based on

whether a condition is true or false.

v if Statement v if...else Statement v if...elseif...else Statement

v switch Statement

October 29, 2025 P5

Control Structures

3. Iteration (Looping): Repeats a block of code.

v for Loop v" while Loop v" do...while Loop

v foreach Loop

October 29, 2025 Pé6

Control Structures

Control Structures

Sequential Selection [teration
________ If Statement if...else for Loop while Loop
________ Statement

if...elseif...else Switch do...while foreach
Statement statement Loop Loop

October 29, 2025 P7

An if statement is a control statement that allows a program to execute a block of code

only if a specified condition is true.

* The statement can be a single statement or a compound statement.

* A compound statement consists of multiple statements enclosed by curly brackets.

(condition){

October 29, 2025 PS8

if Statement Flowchart

October 29, 2025

If true

Statement

L

Condition
Checking

If false

Statement

P9

$y = 10;
if ($y > 0) {
echo "Y is positive”; NIRRT IO

October 29, 2025 P10

if...else Statement

An if..else statement is a control statement that chooses between two paths of

execution:

if (condition) {

} else {

October 29, 2025 P11

Example

$x = -5;
if($x > 0) {

echo "x 1s positive”;
} else {

echo "x is negative”; // X is negative

October 29, 2025 P12

if...else if...else Statement

An if...else if...else statement allows a program to choose between multiple conditions:

if (conditionl) {

} elseif (condition2) {

} else {

October 29, 2025 P13

$marks = 75;

if ($marks >= 90) {
echo "Grade A";
elseif ($marks >= 75) {

echo "Grade B"; // Grade B

elseif ($marks >= 50) {
echo "Grade C";

else {

echo "Fail";

October 29, 2025 P14

switch Statement

A switch statement is a control statement used to select one of many blocks of code to

execute based on the value of a variable.
switch (variable) {
case valuel:

break;
case value2:

break;
default:

October 29, 2025 P15

Example

$day = "Tuesday"”;

switch($day) {
case "Monday":
echo "Today is Monday";
break;
case "Tuesday":

echo "Today is Tuesday"; // Today is Tuesday
break;

default:
echo "Today is not Monday or Tuesday";

October 29, 2025 P16

* In programming, loops allow you to execute a block of code multiple times.

* PHP provides several types of loops, each suited for different use cases.
* Loops are especially useful when working with arrays, databases, and

other situations where repetitive tasks are common.

October 29, 2025 P17

Types of Loops in PHP

PHP supports the following loop structures:

* for Loop - Repeats a block of code a specified number of times.

* while Loop - Repeats a block of code as long as a condition is true.

* do...while Loop - Similar to while, but guarantees the code runs at least once.

* foreach Loop - Specially designed for iterating over arrays.

October 29, 2025 P18

The for loop is ideal when you know beforehand how many times you need

to iterate. It consists of three parts: initialization, condition, and increment/decrement.

e Why Use a For Loop?

It helps reduce code complexity and
improves readability.

}

October 29, 2025

¥ ¥ ¥ ¥ ¥

P19

/*

Iteration: O
for ($1i = 0; $i < 5; $i++) { Iteration: 1
echo "Iteration: $i
"; lteration: 2
} Iteration: 3
Iteration: 4

*/

October 29, 2025 P20

while Loop

The while loop is useful when the number of iterations is unknown and

depends on a condition. It checks the condition before each iteration.

/*
$count = 1; Count: 1
while($count <= 5){ Count: 2
echo "Count: $count
"; Count: 3
$count++; Count: 4
Count: 5

*/

October 29, 2025 P21

do...while loop

The do...while loop is similar to the while loop, but it executes the code block

at least once, regardless of the condition. The condition is checked after the loop executes.

$count
do{

echo "Count: $count
"; // Count: 1

$count++;
} while($count >= 5);

October 29, 2025 P22

Arrays are one of the most fundamental data structures in PHP, allowing you to

store multiple values in a single variable.

In PHP, arrays are flexible, allowing a mix of data types and associative key value pairs.

Types of Arrays in PHP
* Indexed Arrays: Arrays with numeric indices.
* Associative Arrays: Arrays with named keys.

* Multidimensional Arrays: Arrays containing one or more arrays as elements.

October 29, 2025 P24

Indexed Arrays

* An indexed array uses numeric indices to store values. PHP automatically assigns indices

starting from O

$myArrayl array('"valuel", "value2", "value3");

$myArray?2 ["valuel", "value2", "value3"];

October 29, 2025 P25

Indexed Arrays

* PHP automatically assigns the next available numeric index (starting from 0).

$fruits = array();

$fruits|] "Apple”;

$fruits|] "Banana";
$fruits|[] "Orange";
$fruits|] "Pineapple”;

October 29, 2025 P26

Indexed Arrays

* Or the index can be assigned manually

$fruits = array();

$fruits[2] "Apple";

$fruits[4] "Banana";
$fruits[5] "Orange";
$fruits[7] "Pineapple”;

October 29, 2025 P26

Indexed Arrays

* Printing array values

$cars = array("Volvo", "BMW", "Toyota");
e [SR T CCRR. Tor-Y ol B N IR IR EE T TP // | [ike BMW more than Toyota.

$fruits = array("Apple"”, "Banana", "Orange"); /*

Apple
echo $fruits[@] . "
"; Banana
echo $fruits[1] . "
"; Orange
echo $fruits[2]; */

October 29, 2025 P27

foreach Loop

The foreach loop is specially designed to iterate over arrays, making it the

most efficient choice for array manipulation.

$fruits = array("Apple"”, "Banana", "Orange");

/* Apple
foreach ($fruits as $fruit) { Banana
echo "$fruit
"; Orange */

October 29, 2025 P23

Viewing Array Structure and Values

* You can see the structure and values of any array by using one of two statements

var dump() or print r(). The print r() statement, however, gives somewhat less

information.

* Use print_r() when you just want to indexes (or keys) and their corresponding values.

e Use var_dump() when you need full detail (type, size, structure).

October 29, 2025 P28

Viewing Array Structure and Values

$fruits = array("Apple”, "Banana", "Orange");
print_r($fruits);

// Array ([0] => Apple [1] => Banana [2] => Orange)

$fruits = array("Apple”, "Banana", "Orange");

var_dump($fruits);

// array(3) { [0]=> string(5) "Apple" [1]=> string(6) "Banana" [2]=> string(6) "Orange" }

October 29, 2025 P29

Loop Through an Indexed Array

* To loop through and print all the values of an indexed array, you could use

a for loop, like this:

$cars = array("Volvo", "BMW", "Toyota");

for($i = 0; $i < 3; $i++) { /* Volvo
echo $cars[$i]; BMW
echo "
"; Toyota */

October 29, 2025 P30

Associative Arrays

* Associative arrays use named keys that you assign to each value, making it

easier to access data by name rather than by numeric index.

StestArray = array("keyl" => "valuel", "key2" => "value2");

$age — array(”Peter“=>“35“, IIBenII=>II37II, IIJoeII=>II43II);

$age[”Peter”] — u35u;

$age["Ben"] = "37";
$age[uJ0eu] - H43H;

October 29, 2025 P31

Associative Arrays

* Example

$age — array(llpeterll=>ll35ll, IIBenII=>II37II, IIJoeII=>II43II);

echo "Ben is " . $agel'Ben'] . " years old.";

// Ben is 37 years old.

October 29, 2025 P32

Loop Through an Associative Array

* To loop through and print all the values of an associative array, you could

use a foreach loop, like this:

$age = array("Peter"=>"35", "Ben"=>"37", "Joe"=>"43"); /*
foreach($age as $value) { Age: 35
echo "Age: " . $value; Age: 37
echo "
"; Age: 43
*/

October 29, 2025 P33

Loop Through an Associative Array

* Printing the keys and values.

$age = array("Peter"=>"35", "Ben"=>"37", "Joe"=>"43"); I
foreach($age as $key => $value
h($lrE _m $ $i $lr \V i{ _m $ 1 . KeV:PEter’ Value=35
echo ” EY-” - PKEY ., Value=— . pValle,; Key=Ben, Value=37
echo "
"; Key=Joe, Value=43
*/

October 29, 2025 P33

Multidimensional Arrays

* A multidimensional array is an array that contains one or more arrays inside it.

 PHP supports multidimensional arrays that are two, three, four, five, or more levels

deep. However, arrays more than three levels deep are hard to manage for most people.

October 29, 2025 P34

Multidimensional Arrays

e Example

$students = array(

array("Ali", 20, "Computer Science"),
array("Sana", 22, "Information Technology"),
array("Omar", 21, "Software Engineering")

)5

echo $students[0][0]; // Ali

echo $students[1][2]; // Information Technology

October 29, 2025 P35

Multidimensional Arrays

$students = array(
array("Ali", 20, "Computer Science"),
array("Sana", 22, "Information Technology"),
array("Omar"”, 21, "Software Engineering")

i

/*
for ($1 = 0; $1 < 3; $i++) {

for (33 = 0; $ < 3; $j++) { Ali 20 Computer Science
echo $students[$i][$j] . " "; Sana 22 Information Technology

} Omar 21 Software Engineering
echo "
"; */

October 29, 2025 P36

Array Functions in PHP

* The count() function is used to return the length (the number of elements) of an array:

$numbers = [1,2,3,4,5,6,7];
echo count($numbers); /] 7

October 29, 2025 P37

Array Functions in PHP

* in_array() - Searches an array for a specific value.

$fruits = ["apple", "banana", "cherry", "orange"l];
if (in_array("orange", $fruits)) {

echo "Orange 1is in the array";
} else {

echo "Orange is not in the array";

// Orange is in the array

October 29, 2025 P38

Array Functions in PHP

* shuffle() - The shuffle() function randomizes the order of the elements in the array.

$fruits = ["apple", '"banana", '"cherry", "orange"l];

shuffle($fruits);

October 29, 2025 P39

Array Functions in PHP

* The shuffle() function assigns new indices for the elements in the array. Existing indices will

be removed (See Example below).

$fruits = array("Apple"”, "Banana", "Orange", "Mango");
print_r($fruits);

echo "
";
shuffle($fruits);
print_r($fruits);

// Array ([0] => Apple [1] => Banana [2] => Orange [3] => Mango)
// Array ([0] => Orange [1] => Banana [2] => Mango [3] => Apple)

October 29, 2025 P40

Array Functions in PHP

* implode() - The implode() function returns a string from the elements of an array.

$fruits = array("Apple", "Banana", "Orange", "Pineapple");
$text = implode(" ", $fruits);

echo $text;

// Apple_Banana_Orange Pineapple

October 29, 2025 P41

Array Functions in PHP

* explode() - The explode() function breaks a string into an array.

$names = "Ali Aram Kani Kurdistan Milan Saween";
$myArray = explode(” ", $names);

echo $myArray[0];
echo "
";
echo $myArray[3];

// Ali
// Kurdistan

October 29, 2025 P42

Array Functions in PHP

* array_merge(): Allows you to append one array into another.

Think of it as concatenation for arrays.

$namesl = array(“"Kardo", "Zara" ,"Azad");
$names2 = array("Hardi", "Sava", "Bestun");

$names = array_merge($namesl, $names2);
print_r($names);

// Array ([0] => Kardo [1] => Zara [2] => Azad [3] => Hardi [4] => Sava [5] => Bestun)

October 29, 2025 P43

Array Functions in PHP

 Example

$namesl array("Kardo", "Zara" ,"Azad");
$names2 = array("Hardi", "Sava", "Bestun");

$names = array_merge($namesl, $names2);
echo $names[3];

// Hardi

October 29, 2025 P44

Deleting Array Elements

* unset() — The unset() function is used to destroy a variable or an element of an array.

$names = array("Kardo", "Zara" ,"Azad", "Renas", "Sava");
unset($names[2]);

print_r($names);

// Array ([0] => Kardo [1] => Zara [3] => Renas [4] => Sava)

October 29, 2025 P45

Deleting Array Elements

* If you see the above example carefully you will find that the unset() function didn’t reindex
the array after deleting the value from the indexed array. To fix this you can use the

array_splice() function.

array splice()

October 29, 2025 P46

Deleting Array Elements

* |t takes three parameters: an array, offset (where to start), and length (number of elements

to be removed). Let's see how it actually works:

e Example

$names = array("Kardo", "Zara" ,"Azad", "Renas", "Sava");

array_splice($names, 3, 1);
print_r($names);

// Array ([0] => Kardo [1] => Zara [2] => Azad [3] => Sava)

October 29, 2025 P47

PHP Sorting Arrays

* PHP comes with a number of built-in functions designed specifically for sorting
array elements in different ways like alphabetically or numerically in ascending or

descending order. Here we'll explore some of these functions most commonly used

for sorting arrays.

- sort() and rsort() — For sorting indexed arrays.
r=reverse

- asort() and arsort() — For sorting associative arrays by value. a = associative
k = key

- ksort() and krsort() — For sorting associative arrays by key.

October 29, 2025 P48

sort() and rsort()

Examples

$names = array("Kardo", "Zara" ,"Azad", "Renas", "Sava");
sort($names);
print_r($names);

// Array ([0] => Azad [1] => Kardo [2] => Renas [3] => Sava [4] => Zara)

$numbers = array(5, 2, 1, 6, 3);

sort($numbers); // Array ([0]=>1[1]=>2[2]=>3[3]=>5[4]=>6)
print_r($numbers);

October 29, 2025 P49

sort() and rsort()

 Examples

$names = array("Kardo", "Zara" ,"Azad", "Renas", "Sava");
rsort($names);
print_r($names);

// Array ([0] => Zara [1] => Sava [2] => Renas [3] => Kardo [4] => Azad)

$numbers = array(5, 2, 1, 6, 3);

rsort($numbers); // Array ([0] => 6 [1] =>5[2] =>3 [3] =>2 [4] => 1)
print_r($numbers);

October 29, 2025 P50

asort() and ksort()

e Examples

$ages = array(“"Zana" => 23, "Aram" => 22, "Kani" => 20);
asort($ages);
print_r($ages);

// Array ([Kani] => 20 [Aram] => 22 [Zana] => 23)

$ages = array("Zana" => 23, "Aram" => 22, "Kani" => 20);
ksort(%$ages);

print_r($ages);

// Array ([Aram] => 22 [Kani] => 20 [Zana] => 23)
P51

User-defined Functions

* A user-defined function in PHP is a function that you create yourself to perform a

specific task

square($number) {

functionName(){ $result = $number * $number;

echo "This is a function"; echo "The square of $number is $result”;

}

functionName();

square(5);

// This is a function // The square of 5 is 25

October 29, 2025 P52

User-defined Functions

 More Examples

checkAge($age) { printNumbers($n) {

>= 18) { for ($1 = 1; $1 <= $n; $i++) {

"You are an adult.”; .
echo %$i . ;

"You are a minor.";

.
L
J

printNumbers(5);
checkAge(20);

// You are an adult. //12345
P53

Lab Assesments
and

Next Session’s
 [o] o] e

Lab Assessments

e Lab Exercises

Next Session’s Topic

 Date, Time & Form Data Handling

October 29, 2025 P54

References

October 29, 2025

Tatroe, K., & Maclintyre, P. (2020). Programming PHP:

Creating dynamic web pages (4th ed.). O’Reilly Media.

Ullman, L. (2016). PHP for the web: Visual QuickStart
guide (5th ed.). Peachpit Press.

PHP Group. (n.d.). PHP: Hypertext Preprocessor —
official documentation. Retrieved October 19, 2025,
from https://www.php.net

P55

W Thank You!
"V"

	Slide 1
	Slide 2: Outlines
	Slide 3: Learning Outcomes
	Slide 4: Control Structures
	Slide 5: Control Structures
	Slide 6: Control Structures
	Slide 7: Control Structures
	Slide 8: Control Structures
	Slide 9: if Statement
	Slide 10: if Statement Flowchart
	Slide 11: Example
	Slide 12: if…else Statement
	Slide 13: Example
	Slide 14: if…else if…else Statement
	Slide 15: Example
	Slide 16: switch Statement
	Slide 17: Example
	Slide 18: Loops
	Slide 19: Types of Loops in PHP
	Slide 20: for Loop
	Slide 21: Example
	Slide 22: while Loop
	Slide 23: do…while loop
	Slide 24: Arrays
	Slide 25: Indexed Arrays
	Slide 26: Indexed Arrays
	Slide 27: Indexed Arrays
	Slide 28: Indexed Arrays
	Slide 29: foreach Loop
	Slide 30: Viewing Array Structure and Values
	Slide 31: Viewing Array Structure and Values
	Slide 32: Loop Through an Indexed Array
	Slide 33: Associative Arrays
	Slide 34: Associative Arrays
	Slide 35: Loop Through an Associative Array
	Slide 36: Loop Through an Associative Array
	Slide 37: Multidimensional Arrays
	Slide 38: Multidimensional Arrays
	Slide 39: Multidimensional Arrays
	Slide 40: Array Functions in PHP
	Slide 41: Array Functions in PHP
	Slide 42: Array Functions in PHP
	Slide 43: Array Functions in PHP
	Slide 44: Array Functions in PHP
	Slide 45: Array Functions in PHP
	Slide 46: Array Functions in PHP
	Slide 47: Array Functions in PHP
	Slide 48: Deleting Array Elements
	Slide 49: Deleting Array Elements
	Slide 50: Deleting Array Elements
	Slide 51: PHP Sorting Arrays
	Slide 52: sort() and rsort()
	Slide 53: sort() and rsort()
	Slide 54: asort() and ksort()
	Slide 55: User-defined Functions
	Slide 56: User-defined Functions
	Slide 57: Syllabus
	Slide 58: Syllabus
	Slide 59

