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Learning Outcomes

= At the end of today’s session, you will be able to:

v" Explain control structures and functions in PHP.
v" Use selection and looping statements.
v Manipulate arrays with PHP functions.

v Create user-defined functions.
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Control Structures

* Control Structures are programming constructs that determine the flow of execution
of instructions in a program.

 They allow the program to make decisions, repeat actions, and control which
statements are executed based on certain conditions.

* Generally, a program is executed sequentially, line by line, and a control structure

allows you to alter that flow, usually depending on certain conditions.
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Control Structures

1. Sequential: Executes statements in order, one after another.

<?php

Sname = "Renas";

Sage = 21;

echo "Name: " . Sname . "<br>";

echo "Age: " . Sage . "<br>";

echo "Welcome to PHP programming!”;

>
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Control Structures

2. Selection (Decision): Allows a program to choose different actions based on

whether a condition is true or false.

v if Statement v if...else Statement v if...elseif...else Statement

v switch Statement
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Control Structures

3. Iteration (Looping): Repeats a block of code.

v for Loop v" while Loop v" do...while Loop

v foreach Loop
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Control Structures

Control Structures

Sequential Selection [teration
________ If Statement if...else for Loop while Loop
________ Statement

if...elseif...else Switch do...while foreach
Statement statement Loop Loop
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An if statement is a control statement that allows a program to execute a block of code

only if a specified condition is true.

* The statement can be a single statement or a compound statement.

* A compound statement consists of multiple statements enclosed by curly brackets.

(condition){
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if Statement Flowchart
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$y = 10;
if ($y > 0) {
echo "Y is positive”; NIRRT IO
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if...else Statement

An if..else statement is a control statement that chooses between two paths of

execution:

if (condition) {

} else {
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Example

$x = -5;
if($x > 0) {

echo "x 1s positive”;
} else {

echo "x is negative”; // X is negative
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if...else if...else Statement

An if...else if...else statement allows a program to choose between multiple conditions:

if (conditionl) {

} elseif (condition2) {

} else {
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$marks = 75;

if ($marks >= 90) {
echo "Grade A";
elseif ($marks >= 75) {

echo "Grade B"; // Grade B

elseif ($marks >= 50) {
echo "Grade C";

else {

echo "Fail";
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switch Statement

A switch statement is a control statement used to select one of many blocks of code to

execute based on the value of a variable.
switch (variable) {
case valuel:

break;
case value2:

break;
default:

October 29, 2025 P15



Example

$day = "Tuesday"”;

switch($day) {
case "Monday":
echo "Today is Monday";
break;
case "Tuesday":

echo "Today is Tuesday"; // Today is Tuesday
break;

default:
echo "Today is not Monday or Tuesday";
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* In programming, loops allow you to execute a block of code multiple times.

* PHP provides several types of loops, each suited for different use cases.
* Loops are especially useful when working with arrays, databases, and

other situations where repetitive tasks are common.
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Types of Loops in PHP

PHP supports the following loop structures:

* for Loop - Repeats a block of code a specified number of times.

* while Loop - Repeats a block of code as long as a condition is true.

* do...while Loop - Similar to while, but guarantees the code runs at least once.

* foreach Loop - Specially designed for iterating over arrays.
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The for loop is ideal when you know beforehand how many times you need

to iterate. It consists of three parts: initialization, condition, and increment/decrement.

e Why Use a For Loop?

It helps reduce code complexity and
improves readability.

}
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/*

Iteration: O
for ($1i = 0; $i < 5; $i++) { Iteration: 1
echo "Iteration: $i <br>"; lteration: 2
} Iteration: 3
Iteration: 4

*/
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while Loop

The while loop is useful when the number of iterations is unknown and

depends on a condition. It checks the condition before each iteration.

/*
$count = 1; Count: 1
while($count <= 5){ Count: 2
echo "Count: $count <br>"; Count: 3
$count++; Count: 4
Count: 5

*/
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do...while loop

The do...while loop is similar to the while loop, but it executes the code block

at least once, regardless of the condition. The condition is checked after the loop executes.

$count
do{

echo "Count: $count <br>"; // Count: 1

$count++;
} while($count >= 5);
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Arrays are one of the most fundamental data structures in PHP, allowing you to

store multiple values in a single variable.

In PHP, arrays are flexible, allowing a mix of data types and associative key value pairs.

Types of Arrays in PHP
* Indexed Arrays: Arrays with numeric indices.
* Associative Arrays: Arrays with named keys.

* Multidimensional Arrays: Arrays containing one or more arrays as elements.
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Indexed Arrays

* An indexed array uses numeric indices to store values. PHP automatically assigns indices

starting from O

$myArrayl array('"valuel", "value2", "value3");

$myArray?2 ["valuel", "value2", "value3"];
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Indexed Arrays

* PHP automatically assigns the next available numeric index (starting from 0).

$fruits = array();

$fruits|] "Apple”;

$fruits|] "Banana";
$fruits|[] "Orange";
$fruits|] "Pineapple”;
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Indexed Arrays

* Or the index can be assigned manually

$fruits = array();

$fruits[2] "Apple";

$fruits[4] "Banana";
$fruits[5] "Orange";
$fruits[7] "Pineapple”;
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Indexed Arrays

* Printing array values

$cars = array("Volvo", "BMW", "Toyota");
e [ SR T CCRR. Tor-Y ol B N IR IR EE T TP // | [ike BMW more than Toyota.

$fruits = array("Apple"”, "Banana", "Orange"); /*

Apple
echo $fruits[@] . "<br>"; Banana
echo $fruits[1] . "<br>"; Orange
echo $fruits[2]; */
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foreach Loop

The foreach loop is specially designed to iterate over arrays, making it the

most efficient choice for array manipulation.

$fruits = array("Apple"”, "Banana", "Orange");

/* Apple
foreach ($fruits as $fruit) { Banana
echo "$fruit <br>"; Orange */
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Viewing Array Structure and Values

* You can see the structure and values of any array by using one of two statements

var dump() or print r(). The print r() statement, however, gives somewhat less

information.

* Use print_r() when you just want to indexes (or keys) and their corresponding values.

e Use var_dump() when you need full detail (type, size, structure).
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Viewing Array Structure and Values

$fruits = array("Apple”, "Banana", "Orange");
print_r($fruits);

// Array ( [0] => Apple [1] => Banana [2] => Orange )

$fruits = array("Apple”, "Banana", "Orange");

var_dump($fruits);

// array(3) { [0]=> string(5) "Apple" [1]=> string(6) "Banana" [2]=> string(6) "Orange" }
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Loop Through an Indexed Array

* To loop through and print all the values of an indexed array, you could use

a for loop, like this:

$cars = array("Volvo", "BMW", "Toyota");

for($i = 0; $i < 3; $i++) { /* Volvo
echo $cars[$i]; BMW
echo "<br>"; Toyota */
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Associative Arrays

* Associative arrays use named keys that you assign to each value, making it

easier to access data by name rather than by numeric index.

StestArray = array("keyl" => "valuel", "key2" => "value2");

$age — array(”Peter“=>“35“, IIBenII=>II37II, IIJoeII=>II43II);

$age[”Peter”] — u35u;

$age["Ben"] = "37";
$age[uJ0eu] - H43H;
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Associative Arrays

* Example

$age — array(llpeterll=>ll35ll, IIBenII=>II37II, IIJoeII=>II43II);

echo "Ben is " . $agel'Ben'] . " years old.";

// Ben is 37 years old.
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Loop Through an Associative Array

* To loop through and print all the values of an associative array, you could

use a foreach loop, like this:

$age = array("Peter"=>"35", "Ben"=>"37", "Joe"=>"43"); /*
foreach($age as $value) { Age: 35
echo "Age: " . $value; Age: 37
echo "<br>"; Age: 43
*/
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Loop Through an Associative Array

* Printing the keys and values.

$age = array("Peter"=>"35", "Ben"=>"37", "Joe"=>"43"); I
foreach($age as $key => $value
h($lrE _m $ $i $lr \V i{ _m $ 1 . KeV:PEter’ Value=35
echo ” EY-” - PKEY ., Value=— . pValle,; Key=Ben, Value=37
echo "<br>"; Key=Joe, Value=43
*/
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Multidimensional Arrays

* A multidimensional array is an array that contains one or more arrays inside it.

 PHP supports multidimensional arrays that are two, three, four, five, or more levels

deep. However, arrays more than three levels deep are hard to manage for most people.
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Multidimensional Arrays

e Example

$students = array(

array("Ali", 20, "Computer Science"),
array("Sana", 22, "Information Technology"),
array("Omar", 21, "Software Engineering")

)5

echo $students[0][0]; // Ali

echo $students[1][2]; // Information Technology
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Multidimensional Arrays

$students = array(
array("Ali", 20, "Computer Science"),
array("Sana", 22, "Information Technology"),
array("Omar"”, 21, "Software Engineering")

i

/*
for ($1 = 0; $1 < 3; $i++) {

for (33 = 0; $ < 3; $j++) { Ali 20 Computer Science
echo $students[$i][$j] . " "; Sana 22 Information Technology

} Omar 21 Software Engineering
echo "<br>"; */
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Array Functions in PHP

* The count() function is used to return the length (the number of elements) of an array:

$numbers = [1,2,3,4,5,6,7];
echo count($numbers); /] 7
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Array Functions in PHP

* in_array() - Searches an array for a specific value.

$fruits = ["apple", "banana", "cherry", "orange"l];
if (in_array("orange", $fruits)) {

echo "Orange 1is in the array";
} else {

echo "Orange is not in the array";

// Orange is in the array
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Array Functions in PHP

* shuffle() - The shuffle() function randomizes the order of the elements in the array.

$fruits = ["apple", '"banana", '"cherry", "orange"l];

shuffle($fruits);
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Array Functions in PHP

* The shuffle() function assigns new indices for the elements in the array. Existing indices will

be removed (See Example below).

$fruits = array("Apple"”, "Banana", "Orange", "Mango");
print_r($fruits);

echo "<br>";
shuffle($fruits);
print_r($fruits);

// Array ( [0] => Apple [1] => Banana [2] => Orange [3] => Mango )
// Array ( [0] => Orange [1] => Banana [2] => Mango [3] => Apple )
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Array Functions in PHP

* implode() - The implode() function returns a string from the elements of an array.

$fruits = array("Apple", "Banana", "Orange", "Pineapple");
$text = implode(" ", $fruits);

echo $text;

// Apple_Banana_Orange Pineapple
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Array Functions in PHP

* explode() - The explode() function breaks a string into an array.

$names = "Ali Aram Kani Kurdistan Milan Saween";
$myArray = explode(” ", $names);

echo $myArray[0];
echo "<br>";
echo $myArray[3];

// Ali
// Kurdistan
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Array Functions in PHP

* array_merge(): Allows you to append one array into another.

Think of it as concatenation for arrays.

$namesl = array(“"Kardo", "Zara" ,"Azad");
$names2 = array("Hardi", "Sava", "Bestun");

$names = array_merge($namesl, $names2);
print_r($names);

// Array ( [0] => Kardo [1] => Zara [2] => Azad [3] => Hardi [4] => Sava [5] => Bestun )
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Array Functions in PHP

 Example

$namesl array("Kardo", "Zara" ,"Azad");
$names2 = array("Hardi", "Sava", "Bestun");

$names = array_merge($namesl, $names2);
echo $names[3];

// Hardi
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Deleting Array Elements

* unset() — The unset() function is used to destroy a variable or an element of an array.

$names = array("Kardo", "Zara" ,"Azad", "Renas", "Sava");
unset($names[2]);

print_r($names);

// Array ( [0] => Kardo [1] => Zara [3] => Renas [4] => Sava )
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Deleting Array Elements

* If you see the above example carefully you will find that the unset() function didn’t reindex
the array after deleting the value from the indexed array. To fix this you can use the

array_splice() function.

array splice()
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Deleting Array Elements

* |t takes three parameters: an array, offset (where to start), and length (number of elements

to be removed). Let's see how it actually works:

e Example

$names = array("Kardo", "Zara" ,"Azad", "Renas", "Sava");

array_splice($names, 3, 1);
print_r($names);

// Array ( [0] => Kardo [1] => Zara [2] => Azad [3] => Sava )
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PHP Sorting Arrays

* PHP comes with a number of built-in functions designed specifically for sorting
array elements in different ways like alphabetically or numerically in ascending or

descending order. Here we'll explore some of these functions most commonly used

for sorting arrays.

- sort() and rsort() — For sorting indexed arrays.
r=reverse

- asort() and arsort() — For sorting associative arrays by value. a = associative
k = key

- ksort() and krsort() — For sorting associative arrays by key.
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sort() and rsort()

Examples

$names = array("Kardo", "Zara" ,"Azad", "Renas", "Sava");
sort($names);
print_r($names);

// Array ( [0] => Azad [1] => Kardo [2] => Renas [3] => Sava [4] => Zara )

$numbers = array(5, 2, 1, 6, 3);

sort($numbers); // Array ([0]=>1[1]=>2[2]=>3[3]=>5[4]=>6)
print_r($numbers);
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sort() and rsort()

 Examples

$names = array("Kardo", "Zara" ,"Azad", "Renas", "Sava");
rsort($names);
print_r($names);

// Array ( [0] => Zara [1] => Sava [2] => Renas [3] => Kardo [4] => Azad )

$numbers = array(5, 2, 1, 6, 3);

rsort($numbers); // Array ([0] => 6 [1] =>5[2] =>3 [3] =>2 [4] => 1)
print_r($numbers);
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asort() and ksort()

e Examples

$ages = array(“"Zana" => 23, "Aram" => 22, "Kani" => 20);
asort($ages);
print_r($ages);

// Array ( [Kani] => 20 [Aram] => 22 [Zana] => 23 )

$ages = array("Zana" => 23, "Aram" => 22, "Kani" => 20);
ksort(%$ages);

print_r($ages);

// Array ( [Aram] => 22 [Kani] => 20 [Zana] => 23 )
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User-defined Functions

* A user-defined function in PHP is a function that you create yourself to perform a

specific task

square($number) {

functionName(){ $result = $number * $number;

echo "This is a function"; echo "The square of $number is $result”;

}

functionName();

square(5);

// This is a function // The square of 5 is 25
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User-defined Functions

 More Examples

checkAge($age) { printNumbers($n) {

>= 18) { for ($1 = 1; $1 <= $n; $i++) {

"You are an adult.”; .
echo %$i . ;

"You are a minor.";

.
L
J

printNumbers(5);
checkAge(20);

// You are an adult. //12345
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Lab Assesments
and

Next Session’s
 [o] o] e

Lab Assessments

e Lab Exercises

Next Session’s Topic

 Date, Time & Form Data Handling
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