

Concrete and Structures for Interior Design Engineering

Lecture -7-

Structural Elements: Vertical Systems

Lecturer- Asmaa Abdulmajeed

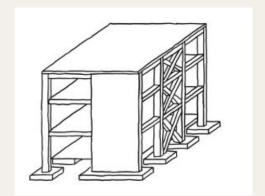
1



Contents

- 1. Introduction to Vertical Structural Systems
- 2. Types of Vertical Structural Members
- 3. Difference Between Vertical and Horizontal Structural Systems
- 4. Primary vs Secondary Vertical Members
- 5. Columns
- 6. Load-Bearing Walls
- 7. Shear Walls
- 8. Stairs as Vertical Structural Elements

TIU


Lecturer- Asmaa Abdulmajeed

1. Introduction to Vertical Structural Systems

- ✓ Vertical structural systems are the parts of a building that stand upright and are responsible for carrying loads downward from the upper parts of the building to the ground.
- ✓ They form the main support framework of a building and work together with horizontal systems such as slabs and beams.
- ✓ Without vertical members, a building cannot stand.

TIU

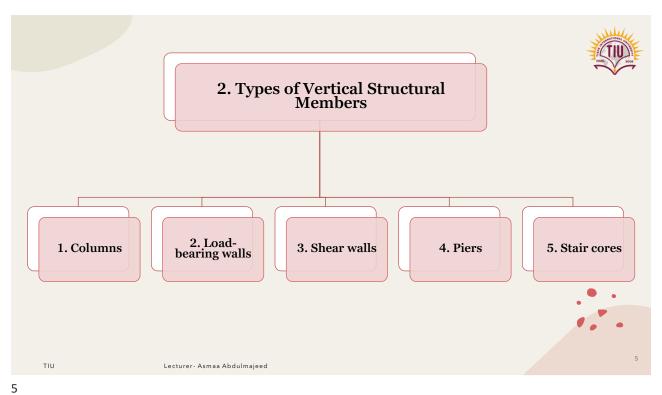
Lecturer- Asmaa Abdulmajeed

3

How loads act in a building:

Buildings are constantly subjected to loads such as:

- > Self-weight of slabs, beams, and walls
- > Weight of furniture and interior finishes
- Weight of people using the building
- > Environmental loads (wind, earthquake)

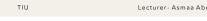

Role of vertical members:

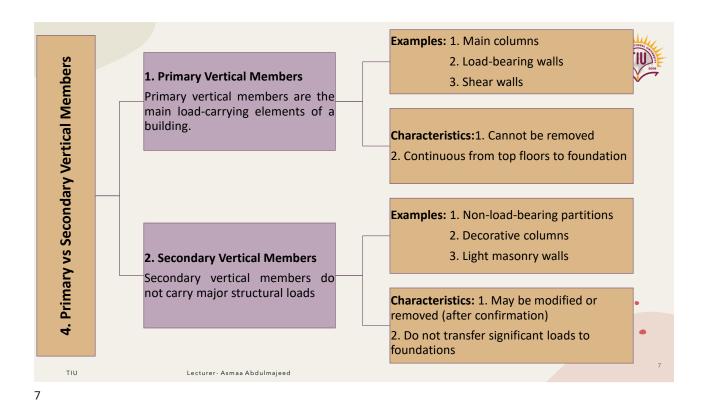
- Columns and walls resist compression forces
- > They ensure that loads move safely and continuously to the ground
- > They prevent excessive deformation or collapse

TIL

Lecturer- Asmaa Abdulmajeed

3. Difference Between Vertical and Horizontal Structural Systems


Aspect	Vertical Structural Systems	Horizontal Structural Systems
Direction	Vertical (up-down)	Horizontal (left-right)
Main function	Carry loads downward	Collect and distribute loads
Examples	Columns, walls, shear walls	Slabs, beams, floors, roofs
Load type	Mainly compression	Mainly bending and shear
Role in interiors	Fix space planning	Affect ceilings and layouts


Simple explanation:

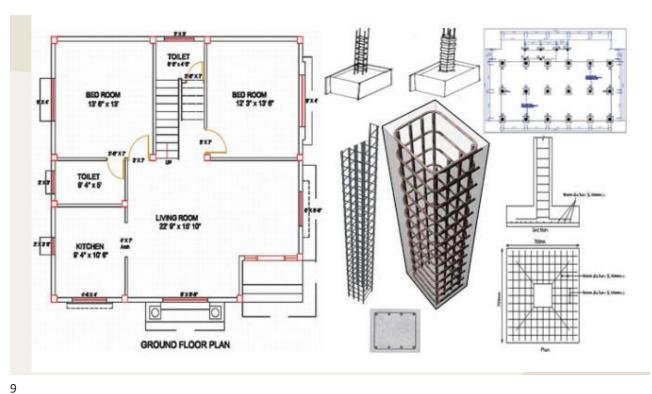
- Horizontal systems collect loads
- Vertical systems carry loads to the ground

Both systems must work together for a building to be stable.

Lecturer- Asmaa Abdulmajeed

5. Columns

ENGEL 2008


- A column is a vertical structural member designed primarily to carry compressive loads from slabs and beams above and transfer them safely to the foundation.
- Columns are one of the most important structural elements in any building. They act as the main

vertical supports.

TIU

Common Materials Used for Columns

1. Reinforced Concrete (RC) Columns

- Most common in residential and commercial buildings
- Made of concrete with steel reinforcement
- Durable, fire-resistant, and strong

Interior design impact:


- Often large in size
- Can be boxed, cladded, or integrated into walls

2. Steel Columns

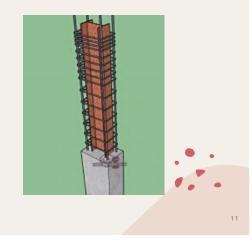
- Used in high-rise or industrial buildings
- Slimmer than concrete columns
- Faster construction

Interior design impact:

- Often exposed for industrial aesthetics
- Require fire protection covering

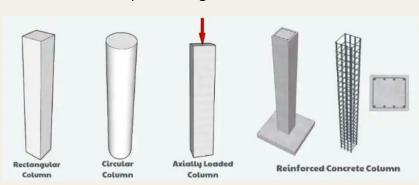
10

3. Composite Columns Combination of


- Combination of steel and concrete
- High strength with smaller size

Interior design impact:

- Efficient space usage
- Mostly seen in large commercial projects


TIU Lecturer- Asmaa Abdulmajeed

11

Typical Column Shapes and Sizes

Common shapes:

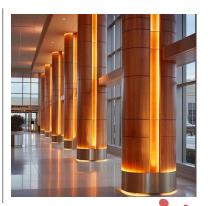
- 1. Square most common
- 2. Rectangular used when space is limited
- 3. Circular architectural or special design

TIU Lecturer- Asmaa Abdulmajeed

Column Placement and Spacing in Building Plans

- Columns are placed according to a structural grid.
- Typical spacing: 3-6 m
- Columns must align vertically from floor to floor
- Column locations strongly influence: Room sizes, Furniture layout

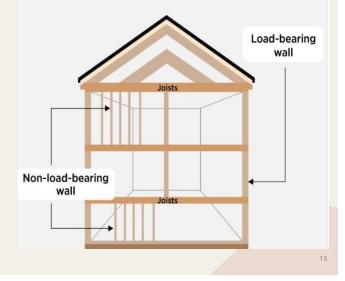
TIU


Lecturer- Asmaa Abdulmajeed

13

TIL

Lecturer- Asmaa



6. Load-Bearing Walls

A load-bearing wall is a wall that:

- > Supports its own weight
- Carries loads from slabs, beams, or roofs above
- > Transfers loads directly to the foundation

- 11

Lecturer- Asmaa Abdulmajeed

15

Materials Used in Load-Bearing Walls

- > Reinforced concrete
- Brick masonry
- > Stone masonry
- Concrete block masonry

Difference Between Load-Bearing Walls and Partition Walls

Aspect	Load-Bearing Wall	Partition Wall
Structural role	Carries loads	Carries no structural load
Can be removed	No	Usually yes
Thickness	Thicker	Thinner
Designed by	Structural engineer	Interior designer

TIL

Lecturer- Asmaa Abdulmajeed

Identification of Load-Bearing Walls in Drawings

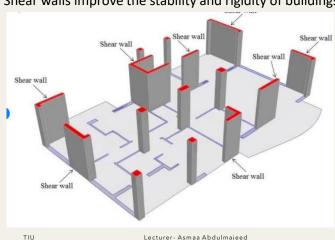
Load-bearing walls can be identified by:

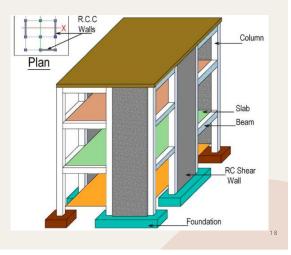
- Thicker wall lines
- Continuous alignment across floors
- ❖ Located under beams or slabs
- ❖ Marked as "structural" in drawings

TIU

Lecturer- Asmaa Abdulmajeed

17


7. Shear Walls



A shear wall is a vertical structural element designed to resist horizontal forces such as:

- Wind loads
- · Earthquake loads

Shear walls improve the stability and rigidity of buildings.

Role in Resisting Wind and Earthquake Loads

- Prevent excessive sideways movement
- ➤ Reduce building sway
- Protect structural and non-structural elements

Typical Locations of Shear Walls

- > Stair cores
- ➤ Lift shafts
- ➤ Building perimeter walls
- ➤ Central core of buildings

TIU

Lecturer- Asmaa Abdulmajeed

19

8. Stairs as Vertical Structural Elements

Stairs are vertical circulation elements that allow movement between different floors of a building.

They are both:

- Functional (movement)
- Structural (load-bearing)

Structural Role of Stairs in Buildings;

- Carry self-weight and live loads
- ❖ Act as rigid vertical elements
- Often connected to slabs and beams
- In some buildings, stairs act as shear walls

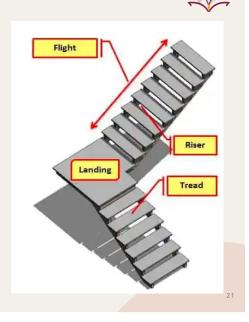
TIU

Lecturer- Asmaa Abdulmajeed

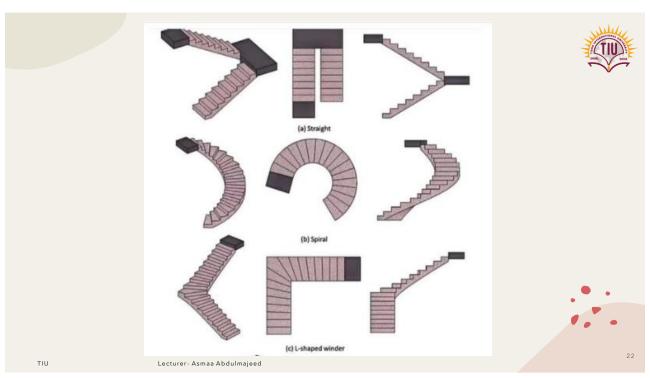
Components of Stairs

- 1. Tread: Horizontal part were foot rests
- 2. Riser: Vertical part between treads
- 3. Flight: Series of steps
- 4. Landing: Flat resting area between flights
- 5. Handrail: Safety component

Types of Stairs


- ✓ Straight stairs
- ✓ L-shaped stairs
- ✓ U-shaped stairs
- ✓ Spiral stairs

Stair type affects:


- ✓ Space planning
- ✓ Safety
- ✓ Visual design

TIL

Lecturer- Asmaa Abdulmajeed

21

References

- 1. A. M. Neville, *Properties of Concrete*, 5th ed. Harlow, UK: Pearson Education Limited, 2011.
- 2. P. K. Mehta and P. J. M. Monteiro, *Concrete: Microstructure, Properties, and Materials*, 4th ed. New York, NY, USA: McGraw-Hill Education, 2014.
- 3. K. Janamian and J. Aguiar, *Concrete Materials Technology: A Practical Guide*, Abingdon, UK: Routledge / Taylor & Francis, 2023.

TIU

Lecturer- Asmaa Abdulmajeed