Flutter Apprentice 2021 Second Edition Book _

MOBILE APPLICATIONS LY T DEPT
T 319 N T

GRADE
WEEK 7

Chapter 4 — Undestanding

Mastering Widgets, Rendering, and Intro to Widgets
State Management in Flutter.

FLUTTER APPRENTICE

812
<

Recipe Calculator Taco Salad

Lezzo Food Ordering

Lezzoo

Welcome to Lezzo! Your ultimate destination for quick, delicious,
and healthy food ordering

Our Services

Online Food Ordering
Order your favorite meals onlin

Contact Us

1250l et i iy SECOND EDITION

e Learn to Build Cross-Platform Apps

www.lezzofood.com

By the raywenderlich Tutorial Team
Mike Katz, Kevin D. Moore, Vincent Ngo & Vincenzo Guzzi

COURSE CONTENT
Week Hour Date Topic
1 2 Introduction to OOP , Class diagram
C O U RS E C O NTE NT 2 2 Introduction to OOP , Class diagram with Dart Packages
Section 1: Build Your First Flutter App, structure of Flutter projects, create the Ul of
3 2 .
a Flutter app by Widgets
4 > Section 2: Everything’'s a Widget, start to build a full-featured recipe app named
Fooderlich
5 2 Section 2: continue building Fooderlich app
6 2 Understanding widgets
7 2 Midterm Exam
8 2 Stateless widgets and build our personal profile application (HW2)
Flutter and OOP
9 2 Application bar, list view and build a custom widget
10 2 Navigation in Flutte, Stateful Widgets and building an interactive applications
1 2 Material Design, Build for Android and iOS platforms, Colors and Themes
12 2 Handle user input and Handle gestures and responsive design
13 2 Final Exam

CONTENTS

SECTION 2 (Everything’s a Widget)

Chapter 4: Understanding Widgets
4.1 What is a widget?

4.2 Unboxing Card2

4.3 Rendering widgets

4.4 Getting Started

4.5 Types of widgets

4.6 Key points

4.7 Where to go from here?

CHAPTER 4: UNDERSTANDING WIDGETS

You may have heard that everything in Flutter is a widget. While that
might not be absolutely true, most of the time when you'’re building

apps, you only see the top layer: widgets. In this chapter, you’ll dive

into widget theory.You’ll explore:

" Widgets
= Widget rendering

= Flutter Inspector

= Types of widgets
= Widget lifecycle
It’s time to jump in!

Note: This chapter is mostly theoretical. You'll make just a few code changes to the
project near the end of the chapter.

WHAT ISAWIDGET?

= A widget is a building block for
your user interface. Using widgets is
like combining Legos. Like Legos,
you can mix and match widgets to
create something amazing.

Flutter's declarative nature makes it super easy to build a Ul with widgets. A widget is a
blueprint for displaying your app state.

UI = f (state)

Screen

6
You can think of widgets as a function of Ul. Given a state, the build() method of a

widget constructs the widget UL

UNBOXING CARD2

In the previous chapter, you created three recipe cards. Now, you'll look in more detail at the widgets that
compose Card2:

Do you remember which widgets you needed to build this card?

Recall that the card consists of the following:

Container widget: Styles, decorates and positions widgets.

Column widget: Displays other widgets vertically.

AuthorCard custom widget: Displays the author’s information.

Expanded widget: Uses a widget to fill the remaining space.

Stack widget: Places widgets on top of each other. t
olumn

Positioned widget: Controls a widget’s position in the stack.

Mike Katz

¥ Smoothie Connoisseur

Stack W=
Positioned
Text

— Recipe

Smoothies

Container

AuthorCard

Expanded

5:07 = %

Fooderlich

. Mike Katz
Smoothie Connoisseur

.g . -
5 ’m;x
o
°
E
(%]
-~ Recip

WIDGET TREES

Every widget contains a build() method. In this method, you create a Ul composition by
nesting widgets within other widgets. This forms a tree-like data structure. Each widget
can contain other widgets, commonly called children. Below is a visualization of Card2's

widget tree: Root Widget

o

Card2 J build()
L
i

Center J build()
L
o

Container J build()
L
f

Column J build()
N

| I g

(AuthorCard] (Expanded) build()

WIDGET TREES

You can also break down AuthorCard and Expanded :

build () (AuthorCard) (Expanded) build()
build{}(Container) (Stack jbuild[‘j

| I
build() (Row) () ())
Positioned Positioned bBuild ()
ki L) (Row) [IcnnButtnn) (Text J (Rntatedﬂnx) bBuild()
(Text) bruild ()
build() (Circlelmage)(SizedBox) (Column J

|
| |
bBuild() (Text) (Text J

The widget tree provides
a blueprint that describes
how you want to lay out
your Ul.

The framework traverses
the nodes in the tree and
calls each build() method
to compose your entire
Ul.

LAB TASK - NESTED WIDGET TREE DESIGN AND CUSTOM WIDGET

= Work collaboratively to design and implement a profile card Ul using a nested widget tree.
= Gain hands-on experience with Flutter widgets, widget trees, and their hierarchy.
= Design Requirements:
* Create a list of profile cards with the following features:
Icon: Display a circular profile Icon at the top.
Name:Add the user’s name in bold.

Bio or position: Include a short bio below the name.

Use the custom widget for that.

RENDERING WIDGETS

In Chapter |,“Getting Started”, you learned that Flutter’s architecture contains three
layers:

In this chapter, you’ll focus on the framework layer.You can break this layer into
four parts:

= Material and Cupertino are Ul control libraries built on top of the widget layer.
They make your Ul look and feel like Android and iOS apps, respectively.

= The Widgets layer is a composition abstraction on widgets. |t contains all the
primitive classes needed to create Ul controls. Check out the official

Framework (Dart)

Engine (C/C++)

Embedder (Platform-specific)

documentation here: https://api.flutter.dev/flutter/widgets/widgets-library.html.

® The Rendering layer is a layout abstraction that draws and handles the widget’s

Material or Cupertino

layout. Imagine having to recompute every widget’s coordinates and frames
manually. Yuck!

Widgets

= Foundation, also known as the dart:ui layer, contains core libraries that handle
animation, painting and gestures.

Rendering

Foundation

https://api.flutter.dev/flutter/widgets/widgets-library.html
https://api.flutter.dev/flutter/widgets/widgets-library.html
https://api.flutter.dev/flutter/widgets/widgets-library.html

RENDERING WIDGETS

Three Trees

Flutter’s framework actually manages not one, but three

trees in parallel:
" Widget Tree

= ElementTree Widgets Element RenderObject
Configuration Lifecycle management Paint

= RenderObject Tree

Here’s how a single widget works under the hood:

I. Widget:The public API or blueprint for the 4—4(FooElement)7—[>

framework. Developers usually just deal with
composing widgets.

)) , * Hold properties * Manage references * Knows how to size
2. Element: Manages a widget and a widget’s render B and element tree and paint
object. For every widget instance in the tree, there is a o Representsa * Layout Children
corresponding element. Widget in a tree « Listen for input, hit-

testing

3. RenderObject: Responsible for drawing and laying
out a specific widget instance. Also handles user

interactions, like hit-testing and gestures. 12

RENDERING WIDGETS

Types of elements

Widget Tree
There are two types of elements: S J
L

= ComponentElement:A type of element that’s composed of Flement Tree RenderObject Tree

otEer elgdments.Thls corresponds to composing widgets inside (— } [StatolossElement }(cenderPositionedBox]

other widgets. .
= RenderObjectElement:A type of element that holds a i

render Object . OREAINEr StatelessElement (RenderDecoratedBox J
You can think of ComponentElement as a group of elements, -]_ _________ [e J’(o dorFlon J
and RenderObjectElement as a single element. Remember that \ e
each element contains a render object to perform widget painting, | I . .
layout and hit testing. [J (}((}([_]

AuthorCard Expanded StatelessElement RenderObject

Example trees for Card2

The image on the right shows an example of the three trees for
the Card2 Ul:

RENDERING WIDGETS

Types of elements

= As you saw in previous chapters, Flutter starts to build your app by calling runApp().

= Every widget’s build() method then composes a subtree of widgets. For each widget in the widget tree, Flutter
creates a corresponding element.

= The element tree manages each widget instance and associates a render object to tell the framework how to
render a particular widget.

Note: For more details on Flutter widget rendering, check out the Flutter team’s talk they gave in China on
how to render widgets: https://youtu.be/9967gFRENMs.

https://youtu.be/996ZgFRENMs

GETTING STARTED

Open the starter project in Android Studio, run flutter pub get if necessary, then run
the app. You'll see the Fooderlich app from the previous chapter:

S cod Q‘S . Next, open DevTools by tapping the blue Dart icon, as shown below:
Fooderlich
o Run: main.dart
Editor's Choice S
The Art of Dough S B Bl Console s
P:I S}an.ing files t0 ucvive ariwne wees

Reloaded @ of 677 libraries in 117ms.

DevTools will open in your browser. Select a widget on the left to see its layout on the

right.

a

tumuwgn tect bread. L
[pndarich Note: It works best with the Google Chrome web browser. Click the ‘& icon to switch

between dark and light mode!

B
B
E

Flutter DevTools e

Flutter Insspector App Sure

[
&

I
%
B
a

¥ SBelect Widgel Mode

~ [[reot] Lapout Explorer Details Tree
« il Foodelsck

= @ MoterialApp Sapck - PerafeSneck 237200
o 1 . 1 .

« T Scollold

| g

o e i s =389 0

M Text
~ P PO il b = o
[¥] Tier ‘__,:
= i P i ol E .
[¥] Text Text - RenderParagraph# 96500 _
w B Poesiliorses =200 D
[¥] Texn
| Y T
X Tt
& Bommoa M geaT e i
. R -
:: : - (o= 1807 >

Cansske E |

Fhufiesr ey et 3 @ w8 s

GETTING STARTED

DevTools overview

DevTools provides all kinds of awesome tools to help you debug your Flutter app. These
include:

= Flutter Inspector: Used to explore and debug the widget tree.

= Performance: Allows you to analyze Flutter frame charts, timeline events and CPU
profiler.

= CPU Profiler: Allows you to record and profile your Flutter app session.
= Memory: Shows how objects in Dart are allocated, which helps find memory leaks.

= Debugger: Supports breakpoints and variable inspection on the call stack. Also allows
you to step through code right within DevTools.

= Network: Allows you to inspect HTTP, HTTPS and web socket traffic within your Flutter
app.
= Logging: Displays events fired on the Dart runtime and app-level log events.

= App Size: Helps you analyze your total app size.

There are many different
tools to play with, but in
this chapter, you’ll only
look at the Flutter
Inspector.

For information about
how the other tools work,
check out:
https://flutter.dev/docs/d
evelopment/tools/devtool

s/overview.

https://flutter.dev/docs/development/tools/devtools/overview
https://flutter.dev/docs/development/tools/devtools/overview
https://flutter.dev/docs/development/tools/devtools/overview

FLUTTER INSPECTOR

The Flutter Inspector has four key benefits. It helps you:

Visualize your widget tree.

Inspect the properties of a specific widget in the tree.

Experiment with different layout configurations using the Layout Explorer.

Enable slow animation to show how your transitions look.

Flutter Inspector tools

Here are some of the important tools to use with the Flutter Inspector.

= Select Widget Mode: When enabled, this allows you to tap a particular widget on a
device or simulator to inspect its properties.

‘s Select Widget Mode

FLUTTER INSPECTOR

Flutter DevTools

[Flutter Inspector 4~ Performance (%) CPU Profiler 9 Memory 4k Debugger “ Network E2 Logging I App Size

. Select Widget Mode C Refresh Tree @ Slow Animations I+ Show Guidelines = A4 Show Baselines «& Highlight Repain
Fooderlich
~ I [root] Layout Explorer Details Tree : Ex

~ @ Fooderlich
~ (@ MaterialApp

v @ AuthorCard
~ [I Container

v @® Home
~ = Scaffold null @
l—v.Cardz padding: Edgelnsets.all(16.0)
O Eik‘ K.g v % Center clipBehavior: Clip.none @
hie Connoisseur ~ {71 container bg: null @
~ B column fg: null @
. @ AuthorCard constraints: null @
margin: null @
—~ [£] Padding

padding: Edgelnsets.all(16.0)

I~ D Row
« @ Circlelmage dependencies: [Directionality]
» ject: #cefae relayoutBoundary=up
~ @ CircleAvatar renderObject: RenderPadding#cefae relayoutBoundary=up1
> 0D Row

O CircleAvatar
[=] SizedBox
v B column
Text: "Mike Katz
Text: "Smoothie ...
—~ @ IconButton
™ Icon
— v [~ Expanded

w
2
=
e
[=]
o
£
w)

Console

flutter.dev/devtools/inspector

FLUTTER INSPECTOR

Clicking any element in the widget tree also highlights the widget on the device and jumps

to the exact line of code. How cool is that! Here’s a screenshot of how it looks on a device:

Fooderlich E

» Refresh Tree: Simply reloads the current widget's info.

C Refresh Tree

» Slow Animation: Slows down the animation so you can visually inspect the Ul
transitions.

- ———

® Slow Animations

» Show Guidelines: Shows visual debugging hints. That allows you to check the borders,
paddings and alignment of your widgets.

Smoothies

—

I+ Show Guidelines 20

It
3

[

FLUTTER INSPECTOR

= Highlight Repaints: Adds a random border to a widget every time Flutter repaints it.
This is useful if you want to find unnecessary repaints.

«& Highlight Repaints

If you feel bored, you can spice things up by enabling disco mode, as shown below:

21

FLUTTER INSPECTOR

= Highlight Oversized Images: Tells you which images in your app are oversized.
M Highlight Oversized Images

If an image is oversized it will invert the image’s colors and flip it upside down. As shown
below:

10:43 '—?%

Fooderlich

22

TYPES OF WIDGETS

Stateless widgets

You can't alter the state or properties of Stateless widget once it's built. When your

properties don't need to change over time, it's generally a good idea to start with a
stateless widget.

Stateless Widgets
Lifecycle

[constructor]

—D[build(context)()]

The lifecycle of a stateless widget starts with a constructor,
which you can pass parameters to, and a build() method,
which you override. The visual description of the widget is
determined by the build() method.

The following events trigger this kind of widget to update:

|. The widget is inserted into the widget tree for the first
time.

2. The state of a dependency or inherited widget —
ancestor nodes — changes.

23

. Mike Katz

Smoothie Connotsseur
Stateful widgets % -
Stateful widgets preserve state, which is useful when parts of your Ul need to change §
dynamically. ©
5

For example, one good time to use a stateful widget is when a user taps a Favorite button
to toggle a simple Boolean value on and off. -

Stateful Widgets

Lifecycle
[constructor] Stateful widgets store their mutable state in a separate State class. That's why every
J7 stateful widget must override and implement createState() .

Next, take a look at the stateful widget's lifecycle.
> [createState() J

24

TYPES OF WIDGETS

BuildContext
assigned

E mounted = true

= Every widget’s build() method takes a BuildContext as s propertes
an argument. The build context tells you where you are v
in the tree of widgets.You can access the element for (“'“C"““#D‘“"“"““““]
any widget through the BuildContext. v

‘=)

= Later, you'll see why the build context is important,
W

es.peC|aIIy for accessing state information from parent (P] (cotState)

widgets. — -

oldwWidget state changes
dlrt'y' false

25

m

mounted = false

TYPES OF WIDGETS

MNow, take a closer look at the lifecycle:

1. When you assign the build context to the widget, an internal flag, mounted , is set to
true . This lets the framework know that this widget is currently on the widget tree.

2. initState() is the first method called after a widget is created. This is similar to
onCreate() in Android or viewDidLoad() iniOS.

3. The first time the framework builds a widget, it calls didChangeDependencies() after
initState() . It might call didChangeDependencies() again if your state object
depends on an inherited widget that has changed. There is more on inherited widgets
below.

4. Finally, the framework calls build() after didChangeDependencies() . This function
is the most important for developers because it's called every time a widget needs
rendering. Every widget in the tree triggers a build() method recursively, so this
operation has to be very fast.

Note: You should always perform heavy computational functions asynchronously and
store their results as part of the state for later use with the build() function.

build(} should never do anything that's computationally demanding. This is similar to
how you think of the i0OS or Android main thread. For example, you should never make a
network call that stalls the Ul rendering.

BuildContext
assigned

i mounted = true

initiState widget.properties

W

(didChangeDependencies]

v
s
N

I didUpdateWidget | setState
Py Fa
WA

oldWidget state changes
dirty = false
v

W

mounted = false

26

TYPES OF WIDGETS

5. The framework calls didUpdateWidget(_) when a parent widget makes a change or BuildContext

needs to redraw the Ul. When that happens, you'll get the oldwWidget instance as a assigned

parameter so you can compare it with your current widget and do any additional logic. mounted = true

. - . initiState widget. properties

6. Whenever you want to modify the state in your widget, you call setState() . The -

framework then marks the widget as dirty and triggersa build() again. ~

(didChangeDependencies]
Note: Asynchronous code should always check if the mounted property is true before —D| dirty=true |J————

calling setstate() , because the widget may no longer be part of the widget tree.

¥
[didUpdateWidget | | setState |
. o 2N
7. When you remove the object from the tree, the framework calls deactivate() . The %

oldWidget state changes
framework can, in some cases, reinsert the state object into another part of the tree.
W

8. The framework calls dispose() when you permanently remove the object and its
activate
state from the tree. This method is very important because you'll need it to handle
memory cleanup, such as unsubscribing streams and disposing of animations or
spose

controllers.

mounted = false

The rule of thumb for dispose() isto check any properties you define in your state and 27
make sure you've disposed of them properly.

ADDING STATEFULWIDGETS

Card2 iscurrentlya StatelessWidget . Notice that the Heart button on the top-right AuthorCard is nested within Card2 . Open author_card.dart and right-click on
currently only displays a SnackBar() , but nothing else like turning a solid color like a AuthorCard . Then click Show Context Actions from the menu that pops up:
typical Favorite button. This isn't because you haven't hooked up any actions. It's r—y—
because the widget, as it is, can't manage state dynamically. To fix this, you'll change this - _
card into a StatefuliWidget . DR _stov Context hctions

final Strint Copy Reference TOEC
final String [paste %y
Piaal Tnagel Paste from Histary... GRY
Mike Katz
Smoathee Connornseur
Select Convert to StatefulWidget. Instead of converting manually, you can just use this
menu shortcut to do it automatically:
= import ...

class Authorard extends StatelessWidget {

/1 Convert to StatefulWidget

final String authoriame;
. R final String title;
» final ImageProvider imageProvider;

Smoothies

ADDING STATEFULWIDGETS

There are now two classes:

s AuthorCard extends

_AuthorCardstate createsSt

¥

class _AuthorCardState extends 5Sts i

Widget build(BuildContext context) {

1
¥

A couple of things to notice in the code above:

= The refactor converted AuthorCard froma StatelessWidget intoa
StatefulWidget . It added a createState() implementation.

= The refactor also created the _AuthorCardState state class. It stores mutable data

29
that can change over the lifetime of the widget.

ADDING STATEFULWIDGETS

Implementing favorites Here's how the new state works:

In{_AuthorCardstate |, add the following property right after the class declaration: 1. First, it checks if the user has favorited this recipe card. If true , it shows a filled heart.

If false , it shows an outlined heart.

_isFavorited = fals . ‘
2. It changes the color to red to give the app more life.

3. When the user presses the IconButton , it togglesthe _isFavorited stateviaacall

Now that you've created a new state, you need to manage it. Replace the current
to setState() .

IconButton in _AuthorCardState with the following:
Save the change to trigger a hot reload and see the heart button toggle on and off when
IconButton(you tap it, as shown below:

icon: Icon{_isFavorited ? Icons.favorite : Icons.favorite_border),

iconSize: 3@, Carrier & 5:46 PM %{:grrier? 5:46 PM ‘
color: Colors.red[400], Fooderlich Fooderlich

onPressed: () {

; Mike Katz v, - Mike Katz

‘] i ; =y & 2
Smoothie Connoisseur Smoothie Connoisseur

ADDING STATEFULWIDGETS

Examining the widget tree

NMow that you've turned AuthorCard into a stateful widget, your next step is to look at
how the element tree manages state changes.

Recall that the framework will construct the widget tree and, for every widget instance,
create an element object. The element, in this case, isa StatefulElement and it
manages the state object, as shown below:

Widget Tree Element Tree
I Stateful —— State
[AuthorCard]q Element D (_isFavorited = false)

Mike Katz

-1

Icon (21 <] S Stateless

Element

When the user taps the heart button, setState() runs and toggles _isFavorited to

true. Internally, the state object marks this element as dirty. That triggers a call to
build()

31

ADDING STATEFULWIDGETS

Widget Tree Element Tree

Mike Katz Stateful State
Smoothie me@ [Authnri:ard]{I { Element D (_isFavorited = false)

Tap to favorite

<]....

N
Stateless
[Tean (W)] I Element
dirty!

new Icon widget instance

This is where the element object shows its strength. It removes the old widget and

replaces it with a new instance of Icon that contains the filled heart icon. .

ADDING STATEFULWIDGETS

Widget Tree Element Tree
- Mike Katz I Stateful |__._ State
Mfm@ [Authnrl:ard]{I [Element] D[(_isFavorited = false))
~ N
Stateless
[Icon (W)]{]'"[Element]
clean

Rather than reconstructing the whole tree, the framework only updates the widgets that
need to be changed. It walks down the tree hierarchy and checks for what's changed. It
reuses everything else.

NMow, what happens when you need to access data from some other widget, located
elsewhere in the hierarchy? You use inherited widgets.

33

SCENARIOS FOR BRAINSTORMING:

Scenario |:Profile Screen

* A profile screen shows a user’s profile picture, name, and bio.The information is static and fetched once from a backend API.
+ Question: Should the profile screen components (picture, name, bio) use Stateless or Stateful widgets?

Scenario 2: Counter App

« A button increments a counter displayed on the screen. The counter value changes every time the button is pressed.

+ Question: Should the counter and button components use Stateless or Stateful widgets?

Scenario 3: Login Form

* Alogin form with two text fields (username and password) and a login button.The button becomes enabled only when both fields are
filled.

+ Question: Should the text fields and button components use Stateless or Stateful widgets?

Scenario 4: Chat Application

* In a chat app, a message list displays incoming and outgoing messages in real time. Messages are updated dynamically as new ones arrive.
* Question: Should the message list use Stateless or Stateful widgets!?

Scenario 5: Dark Mode Toggle

« A toggle switch lets the user switch between light and dark mode. The theme changes dynamically throughout the app when the toggle i¥
pressed.

+ Question: Should the toggle switch component use Stateless or Stateful widgets?

INHERITED WIDGETS

Scenario 1 Scenario 2 .---[}[Jq
i InheritedWidget H
. > ¢
" |nherited widgets let you access state . SR i A E :
" 1 Idge : H
information from the parent elements (J A : ' : :
. . Widget Widget ' : / T : '
in the tree hierarchy. - \d : ’ . \ ; -
. _) v .4 ’ (Widget J Widget : ;
= |magine you have a piece of data way Widget Widget : : - T A\d
up in the widget tree that you want to s 3 ‘\; 5 - w ’ :
. R Meeasnnand Widget (Widget J :
access. One solution is to pass the data) (e ; N :
Widget Widget ' 1 H
down as a parameter on each nested ,3/[=) UTE ;) v . :
widget — but that quickly becomes v . , Widget ,"{ Widget]
annoying and cumbersome. (Widget J (Widget : l:/ =
y ' *
= Wouldn't it be great if there was a (Widget]{ Widget |
centralized way to access such data? ® v @
| Widget -

INHERITED WIDGETS

That’s where inherited widgets come in! By adding an inherited widget in your tree, you can reference the data from
any of its descendants. This is known as lifting state up.

For example, you use an inherited widget when:

Accessing a Theme object to change the Ul’s appearance.
Calling an API service object to fetch data from the web.

Subscribing to streams to update the Ul according to the data received.

Inherited widgets are an advanced topic.You'll learn more about them in Section 4, “Networking, Persistence and
State”, which covers state management and the Provider package—a wrapper around an inherited widget.

36

WHAT IS "LIFTING STATE UP"™

"is a technique used to move shared state to the nearest common ancestor in the widget tree so that it can be
accessed by Lifting state up" multiple child widgets.

Why It's Important:
+ Avoids passing data down through a long chain of widget parameters (prop drilling).

+ Keeps state centralized for better organization and easier debugging.

Prop drilling refers to the process of passing data (props) from a parent widget to deeply nested child widgets
by passing it through intermediate widgets that do not directly use the data. It can make code harder to
maintain as the app grows.

37

EXAMPLE SCENARIO: PROP DRILLING

= Scenario:
* A parent widget (App) holds a themeColor state.
* A deeply nested widget (NestedChild) needs to use this themeColor.

* The intermediate widgets (Parent and Child) must pass the themeColor down even though they don'’t use it
themselves.

38

class ThemeProvider extends StatefulWidget {

EXAM P L E SC E NAR I o: ?‘T’:Z;;?‘Evide rState createState() => _ThemeProviderState();
PROP DRILLING '

class _ThemeProviderState extends State<ThemeProvider> {

Color themeColor = Colors.blue;

import 'package:flutter/material.dart’;

void changeTheme() {

void main() { setState(() {

runApp (App()); themeColor = themeColor == Colors.blue ? Colors.red : Colors.blue;
} };
}
class App extends StatelessWidget { o e
@override Widget build(BuildContext context) {
Widget build(BuildContext context) { return Scaffold(
return MaterialApp(appBar: AppBar(
home: ThemeProvider(), title: Text("Prop Drilling Example"),
i)y
y body: Parent(
v themeColor: themeColor, // Passing themeColor to Parent
onThemeChange: changeTheme, // Passing changeTheme to Parent
),
}

|
class Child extends StatelessWidget {

EXAMPLE SCENARIO: final Color themeColor;
PROP DRILLING Child({required this.themeColor});

@override
Widget build(BuildContext context) {
class Parent extends StatelessWidget { return Container(
final Color themeColor; margin: EdgeInsets.all(16),
final VoidCallback onThemeChange; child: NestedChild(themeColor: themeColor), // Passing themeColor to NestedCl
);
Parent({required this.themeColor, required this.onThemeChange}); }
h

@override
Widget build(BuildContext context) {

return Column(

class NestedChild extends StatelessWidget {
final Color themeColor;

children: [
ElevatedButton(
onPressed: onThemeChange,
child: Text("Change Theme"),

),
Child(themeColor: themeColor), // Passing themeColor to Child

NestedChild({required this.themeColor});

@override
Widget build(BuildContext context) {
return Center(
child: Text(
"Nested Child with theme color!",
)i style: TextStyle(color: themeColor, fontSize: 20),
¥), 40
});

HOW THIS DEMONSTRATES PROP DRILLING

e themeColor is managed inthe ThemeProvider state.

o |tis passed through Parent = Child - NestedChild , even though only NestedChild

uses it.

» |ntermediate widgets (Parent and Child) must include the themeColor in their . .
Alternative Solution:

constructors and pass it down. InheritedWidget or State

Issues with Prop Drilling Managements Solutions

1. Increased Bolilerplate: You can use an InheritedWidget
to avoid prop drilling or
anyother state management
solutions.

e Every intermediate widget must pass the prop down, even if it doesn’t use it.

2. Maintenance Challenges:

o Ifthe themeColor state changes, you must update all intermediate widgets.

3. Scaling Problems: 4l

e As the widget tree grows deeper, prop drilling becomes harder to manage.

REAL-WORLD EXAMPLES: HOW COMPANIES USE FLUTTER

|.Alibaba Q

Use Case: Alibaba Group
- Platform: Xianyu (Idle Fish) WEEERD

* Purpose: A second-hand goods marketplace in China.

* Why Flutter?

Cross-platform development for iOS and Android reduced development time.

High-performance rendering for smooth scrolling and animations in a marketplace app.
Key Flutter Features Used:
- Custom Widgets:To create visually rich interfaces.
* Flutter’s GPU Rendering: Ensures smooth scrolling even with a high volume of product images.
+ Platform Integration: Seamlessly integrates with existing native modules.

= Alibaba Group Flutter Story

42

Alibaba used Flutter to build 50+ million user Xianyu app (Flutter Developer Story)

https://youtu.be/jtYk3gWRSw0
https://youtu.be/jtYk3gWRSw0
https://www.youtube.com/watch?v=jtYk3gWRSw0

REAL-WORLD EXAMPLES: HOW COMPANIES USE FLUTTER

2. Google
Use Case:
+ Platform: Google Ads

* Purpose: Mobile app for campaign management, tracking performance, and receiving real-time notifications.

- Why Flutter?
Single codebase for both Android and iOS.

Flutter’s declarative Ul design simplifies creating intuitive, responsive dashboards.
Key Flutter Features Used:

* Interactive Dashboards: Built with widgets like ListView, DataTable, and GridView.

- Push Notifications: Integrated seamlessly for real-time updates.

REAL-WORLD EXAMPLES: HOW COMPANIES USE FLUTTER

3.BMW
Use Case:

- Platform: My BMW App

* Purpose: Offers a unified app experience for users across different regions to manage their cars.

* Why Flutter?

Faster iteration with shared Ul across Android and iOS.

High-performance animations for car controls.
Key Flutter Features Used:
* Adaptive Layouts: Ensures a consistent look across platforms.

* Real-Time Connectivity: Integrates with loT features for car control.

44

https://flutter.dev/showcase/bmw

EXTENSION TASKS

For advanced learners:

* Build a small clone of a real-world app (e.g., Google Ads dashboard or
BMW car control interface).

* Integrate animations, state management, and real-time updates for a
complete app experience.

45

KEY POINTS (CHAPTER 4)

® What are the three trees in Flutter?
= Flutter maintains three trees in parallel: the Widget, Element and RenderObject trees.
® When should you use a StatefulWidget?

= You should always start by creating StatelessWidgets and only use StatefulWidgets when you need to manage and
maintain the state of your widget.

= A Flutter app is performant because it maintains its structure and only updates the widgets that need redrawing.
= How does the Flutter Inspector help developers?
= The Flutter Inspector is a useful tool to debug, experiment with and inspect a widget tree.

= |nherited widgets are a good solution to access state from the top of the tree.

46

WHERETO GO FROM HERE?

= If you want to learn more theory about how widgets work, check out the following links:

Detailed architectural overview of Flutter and widgets: https:/flutter.dev/docs/resources/architectural-overview.

" The Flutter team created a YouTube series explaining widgets under the
hood: https://www.youtube.com/playlist?list=PLjxrf2q8roU2Hd|QDjJzOe O 6|3FoFLVVr2.

= The Flutter team gave a talk in China on how to render widgets: https://youtu.be/996ZgFRENMs.

In the next chapter, you'll get back to more practical concerns and see how to create scrollable widgets.

47

https://flutter.dev/docs/resources/architectural-overview
https://flutter.dev/docs/resources/architectural-overview
https://flutter.dev/docs/resources/architectural-overview
https://www.youtube.com/playlist?list=PLjxrf2q8roU2HdJQDjJzOeO6J3FoFLWr2
https://youtu.be/996ZgFRENMs

	Slide 1: Mobile Applications IT 319 week 7
	Slide 2: Flutter Apprentice
	Slide 3: Course Content
	Slide 4: Contents
	Slide 5: Chapter 4: Understanding Widgets
	Slide 6: What is a widget?
	Slide 7: Unboxing Card2
	Slide 8: Widget trees
	Slide 9: Widget trees
	Slide 10: Lab Task - Nested Widget Tree Design and custom widget
	Slide 11: Rendering widgets
	Slide 12: Rendering widgets
	Slide 13: Rendering widgets
	Slide 14: Rendering widgets
	Slide 15: Getting started
	Slide 16: Getting started
	Slide 17: Getting started
	Slide 18: Flutter Inspector
	Slide 19: Flutter Inspector
	Slide 20: Flutter Inspector
	Slide 21: Flutter Inspector
	Slide 22: Flutter Inspector
	Slide 23: Types of widgets
	Slide 24: Types of widgets
	Slide 25: Types of widgets
	Slide 26: Types of widgets
	Slide 27: Types of widgets
	Slide 28: Adding stateful widgets
	Slide 29: Adding stateful widgets
	Slide 30: Adding stateful widgets
	Slide 31: Adding stateful widgets
	Slide 32: Adding stateful widgets
	Slide 33: Adding stateful widgets
	Slide 34: Scenarios for Brainstorming:
	Slide 35: Inherited widgets
	Slide 36: Inherited widgets
	Slide 37: What is "Lifting State Up"?
	Slide 38: Example Scenario: Prop Drilling
	Slide 39: Example Scenario: Prop Drilling
	Slide 40: Example Scenario: Prop Drilling
	Slide 41: How This Demonstrates Prop Drilling
	Slide 42: Real-World Examples: How Companies Use Flutter
	Slide 43: Real-World Examples: How Companies Use Flutter
	Slide 44: Real-World Examples: How Companies Use Flutter
	Slide 45: Extension Tasks
	Slide 46: Key points (Chapter 4)
	Slide 47: Where to go from here?

