
MOBILE APPLICATIONS

IT 319

WEEK 7

IT DEPT.

TIU3RD

GRADE

Lect. Mohammad Salim 1

Flutter Apprentice 2021 Second Edition Book

Chapter 4 – Undestanding

Widgets

23 Nov 2025

Mastering Widgets, Rendering, and Intro to

State Management in Flutter.

FLUTTER APPRENTICE

2

COURSE CONTENT

 Flutter and OOP

3

CONTENTS

SECTION 2 (Everything’s a Widget)

 Chapter 4: Understanding Widgets

 4.1 What is a widget?

 4.2 Unboxing Card2

 4.3 Rendering widgets

 4.4 Getting Started

 4.5 Types of widgets

 4.6 Key points

 4.7 Where to go from here?

4

CHAPTER 4: UNDERSTANDING WIDGETS

You may have heard that everything in Flutter is a widget. While that

might not be absolutely true, most of the time when you’re building

apps, you only see the top layer: widgets. In this chapter, you’ll dive

into widget theory. You’ll explore:

 Widgets

 Widget rendering

 Flutter Inspector

 Types of widgets

 Widget lifecycle

It’s time to jump in!
5

WHAT IS A WIDGET?

 A widget is a building block for

your user interface. Using widgets is

like combining Legos. Like Legos,

you can mix and match widgets to

create something amazing.

6

UNBOXING CARD2

In the previous chapter, you created three recipe cards. Now, you’ll look in more detail at the widgets that
compose Card2:

Do you remember which widgets you needed to build this card?

Recall that the card consists of the following:

 Container widget: Styles, decorates and positions widgets.

 Column widget: Displays other widgets vertically.

 AuthorCard custom widget: Displays the author’s information.

 Expanded widget: Uses a widget to fill the remaining space.

 Stack widget: Places widgets on top of each other.

 Positioned widget: Controls a widget’s position in the stack.

7

WIDGET TREES

8

WIDGET TREES

9

The widget tree provides
a blueprint that describes
how you want to lay out
your UI.

 The framework traverses
the nodes in the tree and
calls each build() method
to compose your entire
UI.

LAB TASK - NESTED WIDGET TREE DESIGN AND CUSTOM WIDGET

 Work collaboratively to design and implement a profile card UI using a nested widget tree.

 Gain hands-on experience with Flutter widgets, widget trees, and their hierarchy.

 Design Requirements:

• Create a list of profile cards with the following features:

• Icon: Display a circular profile Icon at the top.

• Name: Add the user’s name in bold.

• Bio or position: Include a short bio below the name.

• Use the custom widget for that.

10

RENDERING WIDGETS

In Chapter 1, “Getting Started”, you learned that Flutter’s architecture contains three
layers:

In this chapter, you’ll focus on the framework layer. You can break this layer into

four parts:

 Material and Cupertino are UI control libraries built on top of the widget layer.

They make your UI look and feel like Android and iOS apps, respectively.

 The Widgets layer is a composition abstraction on widgets. It contains all the

primitive classes needed to create UI controls. Check out the official

documentation here: https://api.flutter.dev/flutter/widgets/widgets-library.html.

 The Rendering layer is a layout abstraction that draws and handles the widget’s

layout. Imagine having to recompute every widget’s coordinates and frames

manually. Yuck!

 Foundation, also known as the dart:ui layer, contains core libraries that handle

animation, painting and gestures. 11

https://api.flutter.dev/flutter/widgets/widgets-library.html
https://api.flutter.dev/flutter/widgets/widgets-library.html
https://api.flutter.dev/flutter/widgets/widgets-library.html

RENDERING WIDGETS

Flutter’s framework actually manages not one, but three
trees in parallel:

 Widget Tree

 Element Tree

 RenderObject Tree

Here’s how a single widget works under the hood:

1. Widget: The public API or blueprint for the
framework. Developers usually just deal with
composing widgets.

2. Element: Manages a widget and a widget’s render
object. For every widget instance in the tree, there is a
corresponding element.

3. RenderObject: Responsible for drawing and laying
out a specific widget instance. Also handles user
interactions, like hit-testing and gestures. 12

Three Trees

RENDERING WIDGETS

There are two types of elements:

 ComponentElement: A type of element that’s composed of
other elements. This corresponds to composing widgets inside
other widgets.

 RenderObjectElement: A type of element that holds a
render object.

You can think of ComponentElement as a group of elements,
and RenderObjectElement as a single element. Remember that
each element contains a render object to perform widget painting,
layout and hit testing.

Example trees for Card2

The image on the right shows an example of the three trees for
the Card2 UI:

13

Types of elements

RENDERING WIDGETS

 As you saw in previous chapters, Flutter starts to build your app by calling runApp().

 Every widget’s build() method then composes a subtree of widgets. For each widget in the widget tree, Flutter

creates a corresponding element.

 The element tree manages each widget instance and associates a render object to tell the framework how to

render a particular widget.

14

Types of elements

Note: For more details on Flutter widget rendering, check out the Flutter team’s talk they gave in China on
how to render widgets: https://youtu.be/996ZgFRENMs.

https://youtu.be/996ZgFRENMs

GETTING STARTED

15

GETTING STARTED

16

GETTING STARTED

17

There are many different
tools to play with, but in
this chapter, you’ll only
look at the Flutter
Inspector.
For information about
how the other tools work,
check out:
https://flutter.dev/docs/d

evelopment/tools/devtool
s/overview.

https://flutter.dev/docs/development/tools/devtools/overview
https://flutter.dev/docs/development/tools/devtools/overview
https://flutter.dev/docs/development/tools/devtools/overview

FLUTTER INSPECTOR

18

FLUTTER INSPECTOR

19

FLUTTER INSPECTOR

20

Here’s a screenshot of how it looks on a device:

FLUTTER INSPECTOR

21

FLUTTER INSPECTOR

22

TYPES OF WIDGETS

The lifecycle of a stateless widget starts with a constructor,

which you can pass parameters to, and a build() method,

which you override. The visual description of the widget is

determined by the build() method.

The following events trigger this kind of widget to update:

1. The widget is inserted into the widget tree for the first

time.

2. The state of a dependency or inherited widget —

ancestor nodes — changes.

23

Stateless widgets

TYPES OF WIDGETS

24

TYPES OF WIDGETS

 Every widget’s build() method takes a BuildContext as

an argument. The build context tells you where you are

in the tree of widgets. You can access the element for

any widget through the BuildContext.

 Later, you’ll see why the build context is important,

especially for accessing state information from parent

widgets.

25

TYPES OF WIDGETS

26

TYPES OF WIDGETS

27

ADDING STATEFUL WIDGETS

28

ADDING STATEFUL WIDGETS

29

ADDING STATEFUL WIDGETS

30

ADDING STATEFUL WIDGETS

31

ADDING STATEFUL WIDGETS

32

ADDING STATEFUL WIDGETS

33

SCENARIOS FOR BRAINSTORMING:

Scenario 1: Profile Screen

• A profile screen shows a user’s profile picture, name, and bio. The information is static and fetched once from a backend API.

• Question: Should the profile screen components (picture, name, bio) use Stateless or Stateful widgets?

Scenario 2: Counter App

• A button increments a counter displayed on the screen. The counter value changes every time the button is pressed.

• Question: Should the counter and button components use Stateless or Stateful widgets?

Scenario 3: Login Form

• A login form with two text fields (username and password) and a login button. The button becomes enabled only when both fields are
filled.

• Question: Should the text fields and button components use Stateless or Stateful widgets?

Scenario 4: Chat Application

• In a chat app, a message list displays incoming and outgoing messages in real time. Messages are updated dynamically as new ones arrive.

• Question: Should the message list use Stateless or Stateful widgets?

Scenario 5: Dark Mode Toggle

• A toggle switch lets the user switch between light and dark mode. The theme changes dynamically throughout the app when the toggle is
pressed.

• Question: Should the toggle switch component use Stateless or Stateful widgets?

34

INHERITED WIDGETS

 Inherited widgets let you access state

information from the parent elements

in the tree hierarchy.

 Imagine you have a piece of data way

up in the widget tree that you want to

access. One solution is to pass the data

down as a parameter on each nested

widget — but that quickly becomes

annoying and cumbersome.

 Wouldn’t it be great if there was a

centralized way to access such data?

35

INHERITED WIDGETS

That’s where inherited widgets come in! By adding an inherited widget in your tree, you can reference the data from

any of its descendants. This is known as lifting state up.

For example, you use an inherited widget when:

 Accessing a Theme object to change the UI’s appearance.

 Calling an API service object to fetch data from the web.

 Subscribing to streams to update the UI according to the data received.

 Inherited widgets are an advanced topic. You’ll learn more about them in Section 4, “Networking, Persistence and

State”, which covers state management and the Provider package—a wrapper around an inherited widget.

36

WHAT IS "LIFTING STATE UP"?

"is a technique used to move shared state to the nearest common ancestor in the widget tree so that it can be

accessed by Lifting state up" multiple child widgets.

Why It's Important:

• Avoids passing data down through a long chain of widget parameters (prop drilling).

• Keeps state centralized for better organization and easier debugging.

Prop drilling refers to the process of passing data (props) from a parent widget to deeply nested child widgets

by passing it through intermediate widgets that do not directly use the data. It can make code harder to

maintain as the app grows.

37

EXAMPLE SCENARIO: PROP DRILLING

 Scenario:

• A parent widget (App) holds a themeColor state.

• A deeply nested widget (NestedChild) needs to use this themeColor.

• The intermediate widgets (Parent and Child) must pass the themeColor down even though they don’t use it

themselves.

38

EXAMPLE SCENARIO:

PROP DRILLING

39

EXAMPLE SCENARIO:

PROP DRILLING

40

HOW THIS DEMONSTRATES PROP DRILLING

41

Alternative Solution:

 InheritedWidget or State

Managements Solutions

You can use an InheritedWidget

to avoid prop drilling or

anyother state management

solutions.

REAL-WORLD EXAMPLES: HOW COMPANIES USE FLUTTER

1. Alibaba

Use Case:

• Platform: Xianyu (Idle Fish)

• Purpose: A second-hand goods marketplace in China.

• Why Flutter?

• Cross-platform development for iOS and Android reduced development time.

• High-performance rendering for smooth scrolling and animations in a marketplace app.

Key Flutter Features Used:

• Custom Widgets: To create visually rich interfaces.

• Flutter’s GPU Rendering: Ensures smooth scrolling even with a high volume of product images.

• Platform Integration: Seamlessly integrates with existing native modules.

 Alibaba Group Flutter Story

 Alibaba used Flutter to build 50+ million user Xianyu app (Flutter Developer Story)
42

https://youtu.be/jtYk3gWRSw0
https://youtu.be/jtYk3gWRSw0
https://www.youtube.com/watch?v=jtYk3gWRSw0

REAL-WORLD EXAMPLES: HOW COMPANIES USE FLUTTER

2. Google

Use Case:

• Platform: Google Ads

• Purpose: Mobile app for campaign management, tracking performance, and receiving real-time notifications.

• Why Flutter?

• Single codebase for both Android and iOS.

• Flutter’s declarative UI design simplifies creating intuitive, responsive dashboards.

Key Flutter Features Used:

• Interactive Dashboards: Built with widgets like ListView, DataTable, and GridView.

• Push Notifications: Integrated seamlessly for real-time updates.
43

REAL-WORLD EXAMPLES: HOW COMPANIES USE FLUTTER

3. BMW

Use Case:

• Platform: My BMW App

• Purpose: Offers a unified app experience for users across different regions to manage their cars.

• Why Flutter?

• Faster iteration with shared UI across Android and iOS.

• High-performance animations for car controls.

Key Flutter Features Used:

• Adaptive Layouts: Ensures a consistent look across platforms.

• Real-Time Connectivity: Integrates with IoT features for car control.
44

https://flutter.dev/showcase/bmw

EXTENSION TASKS

For advanced learners:

• Build a small clone of a real-world app (e.g., Google Ads dashboard or

BMW car control interface).

• Integrate animations, state management, and real-time updates for a

complete app experience.

45

KEY POINTS (CHAPTER 4)

 What are the three trees in Flutter?

 Flutter maintains three trees in parallel: the Widget, Element and RenderObject trees.

 When should you use a StatefulWidget?

 You should always start by creating StatelessWidgets and only use StatefulWidgets when you need to manage and
maintain the state of your widget.

 A Flutter app is performant because it maintains its structure and only updates the widgets that need redrawing.

 How does the Flutter Inspector help developers?

 The Flutter Inspector is a useful tool to debug, experiment with and inspect a widget tree.

 Inherited widgets are a good solution to access state from the top of the tree.

46

WHERE TO GO FROM HERE?

 If you want to learn more theory about how widgets work, check out the following links:

Detailed architectural overview of Flutter and widgets: https://flutter.dev/docs/resources/architectural-overview.

 The Flutter team created a YouTube series explaining widgets under the

hood: https://www.youtube.com/playlist?list=PLjxrf2q8roU2HdJQDjJzOeO6J3FoFLWr2.

 The Flutter team gave a talk in China on how to render widgets: https://youtu.be/996ZgFRENMs.

In the next chapter, you’ll get back to more practical concerns and see how to create scrollable widgets.

47

https://flutter.dev/docs/resources/architectural-overview
https://flutter.dev/docs/resources/architectural-overview
https://flutter.dev/docs/resources/architectural-overview
https://www.youtube.com/playlist?list=PLjxrf2q8roU2HdJQDjJzOeO6J3FoFLWr2
https://youtu.be/996ZgFRENMs

	Slide 1: Mobile Applications IT 319 week 7
	Slide 2: Flutter Apprentice
	Slide 3: Course Content
	Slide 4: Contents
	Slide 5: Chapter 4: Understanding Widgets
	Slide 6: What is a widget?
	Slide 7: Unboxing Card2
	Slide 8: Widget trees
	Slide 9: Widget trees
	Slide 10: Lab Task - Nested Widget Tree Design and custom widget
	Slide 11: Rendering widgets
	Slide 12: Rendering widgets
	Slide 13: Rendering widgets
	Slide 14: Rendering widgets
	Slide 15: Getting started
	Slide 16: Getting started
	Slide 17: Getting started
	Slide 18: Flutter Inspector
	Slide 19: Flutter Inspector
	Slide 20: Flutter Inspector
	Slide 21: Flutter Inspector
	Slide 22: Flutter Inspector
	Slide 23: Types of widgets
	Slide 24: Types of widgets
	Slide 25: Types of widgets
	Slide 26: Types of widgets
	Slide 27: Types of widgets
	Slide 28: Adding stateful widgets
	Slide 29: Adding stateful widgets
	Slide 30: Adding stateful widgets
	Slide 31: Adding stateful widgets
	Slide 32: Adding stateful widgets
	Slide 33: Adding stateful widgets
	Slide 34: Scenarios for Brainstorming:
	Slide 35: Inherited widgets
	Slide 36: Inherited widgets
	Slide 37: What is "Lifting State Up"?
	Slide 38: Example Scenario: Prop Drilling
	Slide 39: Example Scenario: Prop Drilling
	Slide 40: Example Scenario: Prop Drilling
	Slide 41: How This Demonstrates Prop Drilling
	Slide 42: Real-World Examples: How Companies Use Flutter
	Slide 43: Real-World Examples: How Companies Use Flutter
	Slide 44: Real-World Examples: How Companies Use Flutter
	Slide 45: Extension Tasks
	Slide 46: Key points (Chapter 4)
	Slide 47: Where to go from here?

