Weelc8 0 0 I

MOBILE APPLICATIONS IT 319

Modern User Interface
Concepts in Flutter

I'T DEPT.
TIU

Week 8—10 | IT 319 | Practical Ul & Interaction 3RD GRADE

Thses slide notes are based on many different online resources such as Flutter.dev, Flutter Apprentice Book and The complete Fluter bootcamp course



LECTURE OBJECTIVES

s e

..‘Pmr-.)d-llse z : IPuQ

ok Peration — “urppop o, Explain what Material Design and Material 3 are
SEOU_ MO une x = Fayie |

Wirror mod B

- uUse y z Fals
#irro = - i
F_mod.use_z = Trye Descrlbe hOW FIutter handles user mput

Melection at the end -ad

S ob.select= 1 ' . .
der_ob.select-1 Distinguish between gestures and form input
D ntext.scene.objects.actiw
v ('Selectgd" 11L str(ngdifico -
BArror_ob.selec =
bpy. context. selected o Explain responsive Ul concepts in Flutter

ata .objects[one.name] .S@

grint(“please select exactif§ Understand the role of packages and pubspec.yaml

OPERATOR CLASSES -~~~

gypes - P ,-atof‘lr"e selectel

" x mirror Y0 . or x
- ct.mirror-
ghject -




MATERIAL DESIGN @ MATERIAL DESICN

@ material.io/develop/flutter "

eeeeeeeeeeeee

AAAAAAA

Flutter

A framework for building beautiful, natively compiled

= Material Design
Material Design is a design system developed by Google that provides et
standard rules for colors, typography, shapes,and components.
It helps developers build applications that are:

= Visually consistent
= FEasy to use
= Familiar across platforms

= Material Design focuses on clarity, consistency, and usability.



MATERIAL FLUTTER

lass MyApp extends StatelessWidget {

Material Design in Flutter . : .
Widget build(BuildContext context) {

Flutter provides built-in support for Material Design through: | return MaterialApp(
| theme: ThemeData.dark(
= Predefined widgets useMaterial3: ,
),
= Default themes home: MyWidget(),

e

= Platform-adaptive behavior }

This allows developers to focus on functionality, while
Flutter handles visual consistency.




MATERIAL COMPONENTS (FLUTTER)

class ExampleApp extends StatelessWidget {
const ExampleApp({super.key});

@override
Widget build(BuildContext context) {

n MaterialApp(
me: ThemeData(

L

2ed: Colors.red,

ome: const Material3Example());

Material 3 aims to make applications look more modern and adaptive while
reducing manual styling.

Material 3 is enabled by default in Flutter (Flutter 3.16+).
You can still set useMaterial3: true explicitly for clarity, or
useMaterial3: false to temporarily use Material 2.

Flutter M3 Demo %

You have pushed the button this many times:

0




MATERIAL DESIGN
3(FLUTTER)

Material Design 3 is the latest version of
Material Design.

It introduces:

* More rounded shapes
* Updated typography
* Improved color handling

* Modernized Ul components

Snackbar

BUTTON Choice chip

& Top app bar

Label
( Text field | ©®© ’

Eocused Extra-small

° 4+ EXTENED FAB

Dialog

Text field Snackbar

Small

Assist chip

Rich tooltip

Lorem ipsum dolor sit a
adipiscing elit. Nullam et

List item congue consectetur. Vivg

Lorem ipsum dolor sit amet,

List item
consectetur adipiscing elit, sed Medium
do eiusmod tempor incididunt ut Ca rd
labore et dolore magna aliqua.
Card

Body 2

BUTTON BUTTON

Large

V4 / Extended FAB

Extra-large
Dialog

Navigation drawer
Body 2

Full

Subtitle 2 = Search bar

Subtitle 2

M2: Three-level shape scale based on the size of the M3: Seven-level shape scale based on the roundedness of

component container. shape corners.



THEMES AND COLORS IN FLUTTER

A theme defines the overall visual appearance of

It controls: .
Yo a5 ! e Gk 3 i J5H i 1de ald

® Primary colors 0

= Secondary colors ..--..

= Background colors
= Text and icon colors

Using themes ensures:
A sample primary and secondary palette
u Consistency aCross screens

= Better readability 1. Primary color
2. Secondary color

] i i .
Easier maintenance 3. Light and dark variants 7



PRIMARY COLOR

= A top app bar uses light wosiers
and dark primary color
variants to distinguish it
from a system bar.

123.4 M 537

= This Ul uses a primary
color and two primary
variants.

432 1M |
\wo—~  3458M

453 H
T 23,242
12%




SECONDARY COLOR

HEeNON

= Dark and light variants of primary and )ee  gee 7Be 688 S6D 480 308 208 109
secondary colors | [ | | [l

= This Ul uses a color theme with a
primary color, a primary variant, and a Eramary
secondary color. Purple

B R L

23.4 M 537
Color swatches 26.200EE — p—
432 1M —=aalllls

o’ 3a58BM

+17% &1 Lt

A swatch is a sample of a color chosen from a range of similar colors.

45.5 M 4:53 H

23,242 .. _

12% @ ’




TOOLS FOR PICKING COLORS

¥ couor Toot o ® @

TOO | S for p i Cki ng CO | O rS @ USERINTERFACES ~ ACCESSIBILITY MATERIAL PALETTE  CUSTOM

16 3 AA A A
50100 200 300 400 500 600 700 800 900 100 200 400 00

Red

Material palette generator ‘ - " ==l=-lll==
"NENE R
e (| B

CURRENT SCHEME RESET ALL

The Material palette generator can be used to generate a palette for any color you input. Hue, chroma, and
lightriess are adjusted by an algorithm that creates palettes that are usable and aesthetically pleasing.

Primary Secondary Textun P

Input colors sabdthe

Color palettes can be generated based on the primary input color, and whether the desired palette should
be analogous, complementary, or triadic in relation to the primary color.

Texton §

Alternatively, the tool can generate expanded palettes, based on any primary and secondary color.

P - Dark
#190e8b

§ - Dark
#h61827

Color variations for accessibility

These palettes provide additional ways to use your primary and secondary colors. They include lighter and

. ial i 10
darker options to separate surfaces and provide colors that meet accessibility standards. https.//materlal. io/resources/color/



BUILDING PLATFORM SPECIFIC Ul (I0S & ANDROID

=  With Flutter, we are able to design apps that look native to both iOS
and Android using a single code base.

=  For example,an appBar will render differently on iOS and Android.
The title text, position and font are appropriate to the platform as is
the back navigation button.

= In Flutter, you can import dart:io and use Platform property to
look up which platform you are currently running on. The APl is quite
nice: Android

5 1 I
import ‘dart:io’; (€17 ]

Platform.isI0S // Returns true on 105 devices
Platform. isAndroid // Returns true on Android devices




BUILDING PLATFORM SPECIFIC Ul (I0S & ANDROID

= To incorporate specific native widgets, we can use the L SO

themes platform property to determine the platform BT
and build a relevant widgets accordingly in either the
Material or Cupertino style.

= Here is a Material switch when we toggle between
device platforms via the Flutter inspector, the switch
style does not change.

Hello! &

" To use Cupertino widgets, we import the
Cupertino.dart package.

= This allows us to use the Cupertino switch.

=  We will check if the platform is iOS, and if it is, we
show the CupertinoSwitch. Now, when we toggle
between devices, the iOS version shows the default
10S toggle.




BUILDING PLATFORM SPECIFIC Ul (I0S & ANDROID

i ; ody: HelloSwitch()
= You can customize the master theme and its elloswiteh(.

properties.

This master theme is propagated down the widget
tree. Child widgets are able to inherit the master ‘
goverride

theme's styling. Widget build(BuildContex!
Center(
The child widget can also override the theme and child: Row(

customize their styling.

style: TextStyle(fontSize:
ne.of(context)

¢ CupertinoSwitch

va Lut

style: ThemeData




USER INPUT IN MOBILE APPLICATIONS

User input allows users to interact with an application.
Common types of input include:

Text input (forms, search fields)
Button interactions
Touch gestures

Handling user input correctly is essential for interactive and
responsive applications.




TEXT INPUT CONCEPTS

Text Input in Flutter
Flutter provides widgets for text input that allow users to:

= Enter text

= Submit forms

= [nteract with application data
Text input is commonly used in:
= Login screens

= Registration forms

= Search functionality




TEXTFIELD VS TEXTFORMFIELD

Form Styling Demo

Key Idea:
TextFormField supports structured input and
validation, making it suitable for forms. Enter a search term
Widget Description
TextField psed for simple text Enter your username
input

Used inside forms with

TextFormField L
validation



HANDLING USER ACTIONS

When users interact with an app, Flutter detects:

Button presses
Text changes

Form submissions

These actions allow the application to:

Update data
Show feedback

Navigate between screens

How do you run a callback function every time the text changes? With Flutter, you have two
options:

l.
2.

Supply an onSubmitted or onChanged ) callback to a TextField or a TextFormField.
Use a TextEditingController.

Retrieving Text

- onChanged

« onSubmitted

« controller



HANDLE CHANGES TO ATEXT FIELD

2.Use a TextEditingController

A more powerful, but more elaborate approach, is to supply a TextEditingCentroller as the controller property of the
TextField or a TextFormField.

To be notified when the text changes, listen to the controller using the addListener () method using the following steps:

1. Create a TextEditingController. class _MyCustomFormState extends State<MyCustomForm> {

2. Connect the TextEditingController to a text field. // Create a text controller. Later, use it to retrieve the
3. Create a function to print the latest value. A GURTEME WA OT e Tt &2,

4. Listen to the controller for changes. final myController = TextEditingController();

Connect the TextEditingController to a text field Create a function to print the latest value

Supply the TextEditingController to either a TextField or a TextFormField. Once you wire these two classes together, you

You need a function to run every time the text changes. Create a method in the _MyCustomFormState class that prints out the
can begin listening for changes to the text field.

current value of the text field.

TextField( l_D void _printlLatestvalue() { rl:l
controller: myCeontroller, print('Second text field: ${myController.text}');
Do by
Doverride
void initState() {
super.initState(); 18
{/ Start listening to changes

myController.addListener(_printLatestValue);

h



GESTURES

Gestures are touch-based interactions such as:

Gestures
= Tapping

. « onfapDown
= Pressing
« onlap

= Touching Ul elements onDoubleTap

Flutter supports gestures to make applications:

« onLongPress

= More interactive - onVerticalDragStart

= More intuitive onEehzenRAIDIgEE paate

= More responsive

Use Material 3's InkRipple and InkResponse for modern touch 9
feedback effects.



EXAMPLE

/// This is the private State class that goes with MyStatefulWidget.
class _MyStatefulWidgetState extends State<MyStatefulWidget> {
bool _lightIsOn = false;

@override
Widget build(BuildContext context) {
return Scaffold(
body: Container(

alignment: FractionalOffset.center,
child: Column(
mainAxisAlignment: MainAxisAlignment.center,
children: <Widget>|
Padding(
padding: const EdgelInsets.all(8.0),
child: Icon(
Icons.lightbulb_outline,
color: _lightIsOn ? Colors.yellow.shade668 : Colors.black,
size: 60,
),
),

Q

TURN LIGHT ON TURN LIGHT OFF

GestureDetector(
onTap: () {
setState(() {
// Toggle light when tapped.
_lightIsOn = !_lightIsOn;
3
},
child: Container(
color: Colors.yellow.shade609,
padding: const EdgelInsets.all(8),
// Change button text when light changes state.
child: Text(_lightIsOn ? 3




RESPONSIVE DESIGN

Responsive design means that an application adapts its layout
based on:

= Screen size

=  Screen orientation

: : . everywhere
Responsive design ensures that applications work well on: y
"  Phones
= Tablets E—
f Length _——_—_—_—_—_—_—_—_—TTTTTT
= Different screen resolutions T -‘ x\_gjile?;ﬁeem )
E'ﬂ Volume
Time Digital Storage
% Mass

21

A Energy @ Currency
@ Time

Energy




RESPONSIVE Ul IN FLUTTER

Flutter supports responsive design by providing:
Screen size information
Layout flexibility
Dynamic Ul rebuilding

This allows developers to create one
application that works across multiple

devices.




CREATING A RESPONSIVE FLUTTER APP

= Flutter allows you to create apps that self-adapt to the device’s screen size and orientation.
There are two basic approaches to creating Flutter apps with responsive design:

= Use the LayoutBuilder class

From its builder property, you get a BoxConstraints object. Examine the constraint’s properties to decide what to
display. For example, if your maxWidth is greater than your width breakpoint, return a Scaffold object with a row
that has a list on the left. If it’s narrower, return a Scaffold object with a drawer containing that list.

= Use the MediaQuery.of() method in your build functions

This gives you the size, orientation, etc, of your current app. This is more useful if you want to make decisions based
on the complete context rather than on just the size of your particular widget. Again, if you use this, then your build
function automatically runs if the user somehow changes the app’s size.

Other useful widgets and classes for creating a responsive Ul:

AspectRatio, CustomSingleChildlLayout, CustomMultiChildLayout, FittedBoxFractionallySizedBox, LayoutBuilder,
MediaQuery, MediaQueryData, OrientationBuilder.

23


https://api.flutter.dev/flutter/widgets/LayoutBuilder-class.html
https://api.flutter.dev/flutter/widgets/LayoutBuilder/builder.html
https://api.flutter.dev/flutter/rendering/BoxConstraints-class.html
https://api.flutter.dev/flutter/rendering/BoxConstraints/maxWidth.html
https://api.flutter.dev/flutter/material/Scaffold-class.html
https://api.flutter.dev/flutter/material/Scaffold-class.html
https://api.flutter.dev/flutter/widgets/MediaQuery/of.html
https://api.flutter.dev/flutter/widgets/AspectRatio-class.html
https://api.flutter.dev/flutter/widgets/CustomSingleChildLayout-class.html
https://api.flutter.dev/flutter/widgets/CustomMultiChildLayout-class.html
https://api.flutter.dev/flutter/widgets/FittedBox-class.html
https://api.flutter.dev/flutter/widgets/FractionallySizedBox-class.html
https://api.flutter.dev/flutter/widgets/LayoutBuilder-class.html
https://api.flutter.dev/flutter/widgets/MediaQuery-class.html
https://api.flutter.dev/flutter/widgets/MediaQueryData-class.html
https://api.flutter.dev/flutter/widgets/OrientationBuilder-class.html

PACKAGES AND DEPENDENCIES

Packages are reusable libraries that add - - - -

Location aterial SQLite OAuth2

functionality to applications.
They help developers:

= Save time
= Avoid rewriting code

= Use tested solutions

24



PACKAGES, PLUGINS,AND PUBSPEC.YAML u

Location Material SQLite OAuth2

Image Picker Connectivity 10

Tree-shaking

pubspec.yaml File
The pubspec.yaml file contains:

= Application metadata

= Dependencies (packages)

= Assets and fonts Process where redundant and
unused code is removed

= Even though you import a large package, only the functions ) P
sy P &P & Y during code compilation.

you use end up being compiled down to code in release

mode. This is because Flutter uses tree shaking to remove -
redundant and unused code in the compilation process | pUb-deV
for the binary used in production.

" You can search for packages on the Dart packages site.
Using packages and plugins can make your development that The offialpackag prosfpy for et and Fitac appe.
much more efficient.




IMAGE AND ICON ASSETS

= lcons and images are also saved and managed
within the assets directory and
pubspec.yaml file.

= Material design provides over built-in
icons, such as play, refresh, alarm, pets,
insert photo, and more. The material
components also incorporate these icons.

= These icons can be used in icon buttons which
let you specify a function to run when the icon
is tapped.

= The flutter image widget has separate
constructors based on whether your path

points to an asset, local file, or from the
Web.

0

P UOCO R

%,

<

®

%

0w Q =

©

(:q e

&

NI GC

)

8 B @ D

26



NO ASSETS? USE AN API!

Sometimes, the data you want to save changes. So, you can't
save it in an asset.

For example, you might want to randomly select a cute
animal picture from an API each day or for this app, you might
want to know this moment's exchange rate for currencies.

For this, we will call an APl which retrieves real-time data.
Connecting to APIs can be done with the HTTP client in
dart:io.

We create a HTTP client that points to our endpoint. Our
current app does not require authentication or an API key.

So we just hit the endpoint with our to from an amount
query parameters to get the unit conversion that we want.

| would like a cute

animal photo. My AP Image
key is 12345. database

What's today's Currency
exchange rate from: Exchange
1000 USD to Gold Bars? Rate API




NO ASSETS? USE AN API!

0 flutter.udacity.com

= You can try out some queries by going to e T e S T T TR
ﬂuttel’.udacity.comlcuI"I"ency in your Q. https://flutter.udacity.com/currency/convert?from=US Dollar&to=Gold Bar
browser.

Result:
= An APl doesn't immediately return your data
the way a local asset would because Dart runs {"status":"ok","conversion":0.40439439630352586}
in a single thread.

= If we solely wait for the API call to return,

we would see a frozen screen and we Iwonld like a cute .
' . . animal photo. My AP 8¢
wouldn't be able to interact with the app. key is 12345, database

= The API call may take some time to return
based on the server's speed, your Internet
connection, and other factors.

var photo = retrievePhoto();
showPhotoOrlLoadinglndicator(photo);

28




Rather than wait for it, we wrap the APl in an
asynchronous operation.

This lets your app continue to run without getting
blocked.

Dart uses future objects to represent asynchronous
operations.

When a function that returns a future is invoked, two
things happen.

First, the function cues up work to be done and returns an
incomplete future object.

Later, when a value is available, the future object completes
with that value or with an error. We'll discuss errors later.

Future

A Future represents a means for getting a value
sometime in the future, used in asynchronous
operations.

| would like a cute

animal photo. My AP Image

key is 12345. database

‘.Dadmg

S
My phote'!
y\oad‘“g“

var photo = await retrieve

showPhotoOrLoadingIndice

29



REVISION QUIZ

I. Material Design in Flutter provides predefined widgets and themes to ensure visual consistency, while
Material Design 3 modernizes the Ul through updated typography, colors, and component shapes.
[ True [1 False

2. In Flutter, themes control an application’s overall visual appearance, and platform-specific Ul allows apps
to render native-looking components for both Android and iOS using a single code base.
[ True [1 False

3. User input in mobile applications includes text input, button interactions, and gestures, and

TextFormField is preferred over TextField when structured input and validation are required.
[1True [] False

4. Gestures enhance application interactivity, while responsive design ensures that a Flutter app adapts its
layout based on screen size and orientation across different devices.
[ True [] False

5. Flutter applications can be extended using packages defined in the pubspec.yaml file,and when assets
are not suitable for dynamic data, APIs can be used with asynchronous operations to avoid blocking the

user interface.
[ True L] False



_KEY POINTS

Material Design provides Ul consistency
Material 3 modernizes application appearance

User input enables interaction

Gestures enhance usability

Responsive design supports multiple devices

Packages extend application functionality

Use Assets if your images, videos are ready, otherwise API!

31



	Slide 1: Mobile Applications IT 319 
	Slide 2: LECTURE OBJECTIVES
	Slide 3: Material Design
	Slide 4: Material Flutter
	Slide 5: Material Components (Flutter)
	Slide 6: Material DESIGN 3(Flutter)
	Slide 7: Themes and Colors in Flutter
	Slide 8: Primary color
	Slide 9: Secondary color
	Slide 10: Tools for picking colors
	Slide 11: Building Platform Specific UI (iOS & Android
	Slide 12: Building Platform Specific UI (iOS & Android
	Slide 13: Building Platform Specific UI (iOS & Android
	Slide 14: USER INPUT IN MOBILE APPLICATIONS
	Slide 15: TEXT INPUT CONCEPTS 
	Slide 16: TEXTFIELD VS TEXTFORMFIELd
	Slide 17: HANDLING USER ACTIONS 
	Slide 18: Handle changes to a text field
	Slide 19: Gestures 
	Slide 20: Example
	Slide 21: Responsive Design
	Slide 22: RESPONSIVE UI IN FLUTTER 
	Slide 23: Creating a responsive Flutter app
	Slide 24: PACKAGES AND DEPENDENCIES
	Slide 25: Packages, Plugins, and Pubspec.yaml 
	Slide 26: Image and Icon Assets 
	Slide 27: No Assets? Use an API! 
	Slide 28: No Assets? Use an API! 
	Slide 29: No Assets? Use an API! 
	Slide 30: Revision Quiz
	Slide 31

