
MOBILE APPLICATIONS IT 319 

IT DEPT. 

TIU

3RD GRADE

Lect. Mohammad Salim 1

Week 8 to 10

Modern User Interface 

Concepts in Flutter

14  Dec 2025

Thses slide notes are based on many different online resources such as Flutter.dev, Flutter Apprentice Book and The complete Fluter bootcamp course

Week 8–10 | IT 319 | Practical UI & Interaction



LECTURE OBJECTIVES

2

Explain what Material Design and Material 3 are

Describe how Flutter handles user input

Distinguish between gestures and form input

Explain responsive UI concepts in Flutter

Understand the role of packages and pubspec.yaml



MATERIAL DESIGN

 Material Design

Material Design is a design system developed by Google that provides 

standard rules for colors, typography, shapes, and components.

It helps developers build applications that are:

 Visually consistent

 Easy to use

 Familiar across platforms

 Material Design focuses on clarity, consistency, and usability.

3



MATERIAL FLUTTER

Material Design in Flutter

Flutter provides built-in support for Material Design through:

 Predefined widgets

 Default themes

 Platform-adaptive behavior

This allows developers to focus on functionality, while 

Flutter handles visual consistency.

4



MATERIAL COMPONENTS (FLUTTER)

5

Material 3 aims to make applications look more modern and adaptive while 

reducing manual styling.

Material 3 is enabled by default in Flutter (Flutter 3.16+). 
You can still set useMaterial3: true explicitly for clarity, or 

useMaterial3: false to temporarily use Material 2.



MATERIAL DESIGN 

3(FLUTTER)

6

Material Design 3 is the latest version of 

Material Design.

It introduces:

• More rounded shapes

• Updated typography

• Improved color handling

• Modernized UI components



THEMES AND COLORS IN FLUTTER

A theme defines the overall visual appearance of 
an application.
It controls:

 Primary colors

 Secondary colors

 Background colors

 Text and icon colors

Using themes ensures:

 Consistency across screens

 Better readability

 Easier maintenance
7



PRIMARY COLOR

 A top app bar uses light 

and dark primary color 

variants to distinguish it 

from a system bar.

 This UI uses a primary 

color and two primary 

variants.

8



SECONDARY COLOR

 Dark and light variants of primary and 

secondary colors

 This UI uses a color theme with a 

primary color, a primary variant, and a 

secondary color.

9



TOOLS FOR PICKING COLORS

10https://material.io/resources/color/



BUILDING PLATFORM SPECIFIC UI (IOS & ANDROID

 With Flutter, we are able to design apps that look native to both iOS 

and Android using a single code base. 

 For example, an appBar will render differently on iOS and Android. 

The title text, position and font are appropriate to the platform as is 

the back navigation button. 

 In Flutter, you can import dart:io and use Platform property to 

look up which platform you are currently running on. The API is quite 

nice:

11



BUILDING PLATFORM SPECIFIC UI (IOS & ANDROID

 To incorporate specific native widgets, we can use the 

themes platform property to determine the platform 

and build a relevant widgets accordingly in either the 

Material or Cupertino style. 

 Here is a Material switch when we toggle between 

device platforms via the Flutter inspector, the switch 

style does not change. 

 To use Cupertino widgets, we import the 

Cupertino.dart package. 

 This allows us to use the Cupertino switch. 

 We will check if the platform is iOS, and if it is, we 

show the CupertinoSwitch. Now, when we toggle 

between devices, the iOS version shows the default 

iOS toggle. 

12



BUILDING PLATFORM SPECIFIC UI (IOS & ANDROID

 You can customize the master theme and its 

properties. 

 This master theme is propagated down the widget 

tree. Child widgets are able to inherit the master 

theme's styling. 

 The child widget can also override the theme and 

customize their styling. 

13



USER INPUT IN MOBILE APPLICATIONS

User input allows users to interact with an application.

Common types of input include:

 Text input (forms, search fields)

 Button interactions

 Touch gestures

 Handling user input correctly is essential for interactive and 

responsive applications.

14



TEXT INPUT CONCEPTS 

Text Input in Flutter

Flutter provides widgets for text input that allow users to:

 Enter text

 Submit forms

 Interact with application data

Text input is commonly used in:

 Login screens

 Registration forms

 Search functionality

15



TEXTFIELD VS TEXTFORMFIELD

Widget Description

TextField
Used for simple text 

input

TextFormField
Used inside forms with 

validation

16

Key Idea:

TextFormField supports structured input and 

validation, making it suitable for forms.



HANDLING USER ACTIONS 

When users interact with an app, Flutter detects:

 Button presses

 Text changes

 Form submissions

These actions allow the application to:

 Update data

 Show feedback

 Navigate between screens

How do you run a callback function every time the text changes? With Flutter, you have two 
options:

1. Supply an onSubmitted or onChanged() callback to a TextField or a TextFormField.

2. Use a TextEditingController.
17



HANDLE CHANGES TO A TEXT FIELD

18



GESTURES 

Gestures are touch-based interactions such as:

 Tapping

 Pressing

 Touching UI elements

Flutter supports gestures to make applications:

 More interactive

 More intuitive

 More responsive

Use Material 3's InkRipple and InkResponse for modern touch 

feedback effects.

19



EXAMPLE

20



RESPONSIVE DESIGN

Responsive design means that an application adapts its layout 

based on:

 Screen size

 Screen orientation

Responsive design ensures that applications work well on:

 Phones

 Tablets

 Different screen resolutions

21



RESPONSIVE UI IN FLUTTER 

Flutter supports responsive design by providing:

 Screen size information

 Layout flexibility

 Dynamic UI rebuilding

This allows developers to create one 

application that works across multiple 

devices.

22



CREATING A RESPONSIVE FLUTTER APP

 Flutter allows you to create apps that self-adapt to the device’s screen size and orientation.

There are two basic approaches to creating Flutter apps with responsive design:

 Use the LayoutBuilder class

From its builder property, you get a BoxConstraints object. Examine the constraint’s properties to decide what to 
display. For example, if your maxWidth is greater than your width breakpoint, return a Scaffold object with a row 
that has a list on the left. If it’s narrower, return a Scaffold object with a drawer containing that list. 

 Use the MediaQuery.of() method in your build functions

This gives you the size, orientation, etc, of your current app. This is more useful if you want to make decisions based 
on the complete context rather than on just the size of your particular widget.  Again, if you use this, then your build 
function automatically runs if the user somehow changes the app’s size.

Other useful widgets and classes for creating a responsive UI:

AspectRatio, CustomSingleChildLayout, CustomMultiChildLayout, FittedBoxFractionallySizedBox, LayoutBuilder, 
MediaQuery, MediaQueryData, OrientationBuilder.

23

https://api.flutter.dev/flutter/widgets/LayoutBuilder-class.html
https://api.flutter.dev/flutter/widgets/LayoutBuilder/builder.html
https://api.flutter.dev/flutter/rendering/BoxConstraints-class.html
https://api.flutter.dev/flutter/rendering/BoxConstraints/maxWidth.html
https://api.flutter.dev/flutter/material/Scaffold-class.html
https://api.flutter.dev/flutter/material/Scaffold-class.html
https://api.flutter.dev/flutter/widgets/MediaQuery/of.html
https://api.flutter.dev/flutter/widgets/AspectRatio-class.html
https://api.flutter.dev/flutter/widgets/CustomSingleChildLayout-class.html
https://api.flutter.dev/flutter/widgets/CustomMultiChildLayout-class.html
https://api.flutter.dev/flutter/widgets/FittedBox-class.html
https://api.flutter.dev/flutter/widgets/FractionallySizedBox-class.html
https://api.flutter.dev/flutter/widgets/LayoutBuilder-class.html
https://api.flutter.dev/flutter/widgets/MediaQuery-class.html
https://api.flutter.dev/flutter/widgets/MediaQueryData-class.html
https://api.flutter.dev/flutter/widgets/OrientationBuilder-class.html


PACKAGES AND DEPENDENCIES

Packages are reusable libraries that add 

functionality to applications.

They help developers:

 Save time

 Avoid rewriting code

 Use tested solutions

24



PACKAGES, PLUGINS, AND PUBSPEC.YAML 

pubspec.yaml File
The pubspec.yaml file contains:

 Application metadata

 Dependencies (packages)

 Assets and fonts

 Even though you import a large package, only the functions 
you use end up being compiled down to code in release 
mode. This is because Flutter uses tree shaking to remove 
redundant and unused code in the compilation process 
for the binary used in production. 

 You can search for packages on the Dart packages site. 
Using packages and plugins can make your development that 
much more efficient. 25



IMAGE AND ICON ASSETS 

 Icons and images are also saved and managed 
within the assets directory and 
pubspec.yaml file. 

 Material design provides over built-in 
icons, such as play, refresh, alarm, pets, 
insert photo, and more. The material 
components also incorporate these icons. 

 These icons can be used in icon buttons which 
let you specify a function to run when the icon 
is tapped. 

 The flutter image widget has separate 
constructors based on whether your path 
points to an asset, local file, or from the 
Web. 

26



NO ASSETS? USE AN API! 

 Sometimes, the data you want to save changes. So, you can't 

save it in an asset. 

 For example, you might want to randomly select a cute 

animal picture from an API each day or for this app, you might 

want to know this moment's exchange rate for currencies.

 For this, we will call an API which retrieves real-time data. 

Connecting to APIs can be done with the HTTP client in 

dart:io. 

 We create a HTTP client that points to our endpoint. Our 

current app does not require authentication or an API key. 

 So we just hit the endpoint with our to from an amount 

query parameters to get the unit conversion that we want. 27



NO ASSETS? USE AN API! 

 You can try out some queries by going to 
flutter.udacity.com/currency in your 
browser. 

 An API doesn't immediately return your data 
the way a local asset would because Dart runs 
in a single thread.

 If we solely wait for the API call to return, 
we would see a frozen screen and we 
wouldn't be able to interact with the app. 

 The API call may take some time to return 
based on the server's speed, your Internet 
connection, and other factors. 

28

Result: 



NO ASSETS? USE AN API! 

 Rather than wait for it, we wrap the API in an 

asynchronous operation. 

 This lets your app continue to run without getting 

blocked.

 Dart uses future objects to represent asynchronous 

operations. 

 When a function that returns a future is invoked, two 

things happen. 

 First, the function cues up work to be done and returns an 

incomplete future object. 

 Later, when a value is available, the future object completes 

with that value or with an error.  We'll discuss errors later. 

29



REVISION QUIZ

1. Material Design in Flutter provides predefined widgets and themes to ensure visual consistency, while 
Material Design 3 modernizes the UI through updated typography, colors, and component shapes.
☐ True ☐ False

2. In Flutter, themes control an application’s overall visual appearance, and platform-specific UI allows apps 
to render native-looking components for both Android and iOS using a single code base.
☐ True ☐ False

3. User input in mobile applications includes text input, button interactions, and gestures, and 
TextFormField is preferred over TextField when structured input and validation are required.
☐ True ☐ False

4. Gestures enhance application interactivity, while responsive design ensures that a Flutter app adapts its 
layout based on screen size and orientation across different devices.
☐ True ☐ False

5. Flutter applications can be extended using packages defined in the pubspec.yaml file, and when assets 
are not suitable for dynamic data, APIs can be used with asynchronous operations to avoid blocking the 
user interface.
☐ True ☐ False

30



31

Material Design provides UI consistency

Material 3 modernizes application appearance

User input enables interaction

Gestures enhance usability

Responsive design supports multiple devices

Packages extend application functionality

Use Assets if your images, videos are ready, otherwise API!


	Slide 1: Mobile Applications IT 319 
	Slide 2: LECTURE OBJECTIVES
	Slide 3: Material Design
	Slide 4: Material Flutter
	Slide 5: Material Components (Flutter)
	Slide 6: Material DESIGN 3(Flutter)
	Slide 7: Themes and Colors in Flutter
	Slide 8: Primary color
	Slide 9: Secondary color
	Slide 10: Tools for picking colors
	Slide 11: Building Platform Specific UI (iOS & Android
	Slide 12: Building Platform Specific UI (iOS & Android
	Slide 13: Building Platform Specific UI (iOS & Android
	Slide 14: USER INPUT IN MOBILE APPLICATIONS
	Slide 15: TEXT INPUT CONCEPTS 
	Slide 16: TEXTFIELD VS TEXTFORMFIELd
	Slide 17: HANDLING USER ACTIONS 
	Slide 18: Handle changes to a text field
	Slide 19: Gestures 
	Slide 20: Example
	Slide 21: Responsive Design
	Slide 22: RESPONSIVE UI IN FLUTTER 
	Slide 23: Creating a responsive Flutter app
	Slide 24: PACKAGES AND DEPENDENCIES
	Slide 25: Packages, Plugins, and Pubspec.yaml 
	Slide 26: Image and Icon Assets 
	Slide 27: No Assets? Use an API! 
	Slide 28: No Assets? Use an API! 
	Slide 29: No Assets? Use an API! 
	Slide 30: Revision Quiz
	Slide 31

