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Previous lecture

« Spring analysis by direct stiffness
method

» Shape function of the spring element

 Derivation of the spring stiffness
matrix



Example 2.3

(a) Using the ideas presented in Section 2.3 for the system of linear elastic springs
shown mn Figure 2-14, express the boundary conditions, the compatibility or continu-
ity condition similar to Eq. (2.3.3), and the nodal equilibrium conditions similar to
Egs. (2.3.4)-(2.3.6). Then formulate the global stifTness matnx and equations for solu-
tion of the unknown global displacement and forces. The spring constants for the ele-
ments are ky, k2, and ky; P is an applied foree at node 2.

(b) Using the direct stiffness method, formulate the same global stiffness matnx
and equation as in part (a).

Figure 2-14 Spring assemblage for solution

(a) The boundary conditions are
di, =10 iy, =10 iy = 0 (2.5.44)
The compatibility condition at node 2 15

d.;:-_ ﬁ;ﬁl_ d;i:-_ ds. (2.5.45)



The nodal equilibrium conditions are

Fio= /)
P ‘l:)+ﬂ,?]+j'(3)
T (2.5.46)
Fy. = £
Fae=fO)

where the sign convention for positive element nodal forces given by Figure 2-2 was
used in writing Egs. (2.5.46). Figure 2-15 shows the element and nodal force free-
body diagrams.
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Figure 2-15 Free-body diagrams of elements and nodes of spring assemblage
of Figure 2-14



Using the local stiffness matnx Eq. (2.2.17) applied to each element, and com-
patibility condition Eq. (2.5.45), we obtain the total or global equilibrium equations as

Fiy = kydy, — kyda,

P = —kydy, + kydae + kaday — kads, + kady, — kady,
Fy, = —kady, + kady,
Fuy = —kads, + ke,

In matnx form, we express Egs. (2.5.47) as

Fix "k
P —ky
Ve[| o
| Fi, 0

_kl.

kg + ks + ks
—ks
—.IEi.-j,

0
ks
k2

0

ke

(2.5.47)
ﬂr‘l x
ila

= p
. (2.5.48)
Iﬂr-ll.'l:

Therefore, the global stiffness matrix is the square, symmetric matrix on the right side
of Eq. (2.5.48). Making use of the boundary conditions, Egs. (2.5.44), and then con-
sidering the second equation of Eqgs. (2.5.47) or (2.5.48), we solve for ds, as

ds,

P

=-flfl +ka + ko

(2.5.49)



We could have obtained this same result by deleting rows 1, 3, and 4 in the F and d
matrices and rows and columns 1, 3, and 4 in K, corresponding to zero displacement,
as previously described in Section 2.4, and then solving for ds,.

Using Egs. (2.5.47), we now solve for the global forces as

Fi, = —kida, Fiy, = —kadh, Fi, = —kads, (2.5.50)

The forces given by Egs. (2.5.50) can be interpreted as the global reactions in this
example. The negative signs in front of these forces indicate that they are directed to
the left (opposite the x axs).

(b) Using the direct stiffness method, we formulate the global stiffness matrix.
First, using Eq. (2.2.18), we express cach element stiffness matrix as

Iﬂr| I d! X 'dj X dl X dl X ﬂrﬂ X
ki —k 3 ka —ks ki —ks
kY = k' = k3 = 2.5.51
- [—Jﬂ k| ] - —.It:g k3:| - [—kg ka] |: }

where the particular degrees of freedom associated with each element are listed in the
columns above each matrix. Using the direct stiffness method as outlined in Section
2.4, we add terms from each element stiffness matrix into the appropriate correspond-
ing row and column in the global stiffness matrix to obtain

dl_-: dil. dl\: d’ﬂ»‘t
ki —ky 0 1]
K —ky ki tka+ ks —ka —ks
=10 —ks ka 0 (2.5.52)

0 —k3 L ks



Finite Element Basis

* Recall the process for matrix analysis:

— Divide the structure into elements

— Form stiffness matrix for each element
— Assemble stiffness matrices

— Apply boundary conditions

— Solve for unknown displacements

— Back substitute to solve for:
* Reactions
* Internal forces




Derive Stiffness matrix for Bar Element

oE:Q

€ 1 [ py B0

eg=F € Tk : N
* F— pchange inlength . (o= Ec

A original length A e oy J F_ AL o EA
® N it N

F= Eu Strain: e= 2L Stiffness

—_ — 1 EA

< = TAL

A L



fia _El | —1] dy,
f| L L-1 1]]d
Now, htﬂaustf = kd, we have, from Eq. (3.1.13),

i - AE

AE| 1 -1
L |-1 .



Stiffness Matrix for a Bar Element

Example 1 - Bar Problem

Consider the following three-bar system shown below. Assume
for elements 1 and 2: A =1 in? and E = 30 (10°) psi and for
element 3: A= 2 in2and E = 15 (106) psi.

3000 Ib
21 ® "L@ 3 ® 4E el
v
é._wm—-}.—wm—-}—mm_.é
f 90 in.
A 7

Determine: (a) the global stiffness matrix, (b) the displacement
of nodes 2 and 3, and (c) the reactions at nodes 1 and 4.



Stiffness Matrix for a Bar Element
Example 1 - Bar Problem

For elements 1 and 2:

1 2 node numbers for element 1
2 3 node numbers for element 2

k" =K@ = (1)(30x 106)[_: 4]% = 10‘3[_1 —1]%

30 1 AR

For element 3:
3 4 node numbers for element 3

(2)(15%x10°)[ 1 -1 1 -1
(3) _ b/ —10° b
=% [-1 1]/"’10 [-1 1]4’

As before, the numbers above the matrices indicate the
displacements associated with the matrix.



Stiffness Matrix for a Bar Element

Example 1 - Bar Problem
Assembling the global stiffness matrix by the direct stiffness

methods gives: -y T
b T-1'0 0]

' 472157 0

K=10= === .\ .

0|:1.:_2.f‘1l

0 0i=1_1

displacements gives:

'F,,’ -1 -1 .0 0][w,
<sz>=103 -4 "2 =1 O<u2$
st 0 ‘—1 2 "’1 U3
P (0 0 -1 1]|u,




Stiffness Matrix for a Bar Element
Example 1 - Bar Problem

The boundary conditions are: U, =u, =0

i [ - TIRA
F. =11 2 1!

JF2e | _ 408 1:2 1:04u2\
F. 0i-1 2i-1||u,
Fix 00 -1} 1]l0

Applying the boundary conditions and the known forces
(F,, = 3,000 Ib) gives:

U0 1 2



Stiffness Matrix for a Bar Element

Example 1 - Bar Problem

Solving for u, and u; gives:  y, =0.002 in
u, =0.001in

The global nodal forces are calculated as:

[F,, | 1 -1 0 0] 0 ~2.000'
JFor| _qqe| =1 2 -1 0|}0.002] _| 3,000
F,, 0 -1 2 -1/]|0.001 0
F,, | 0 0 -1 1]| O ~1,000




Example

Using direct stiffness method, determine the nodal
displacement of stepped bar as shown in figure also determine
reaction support and stresses in each element. Take E=200GPa

A1=200mm

20kN A2: 10KN
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Solution
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Solution
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Class Activity

* For the Bar Assemblages shown in figure Determine the nodal
Displacement, The forces in each element and the reaction use the
direct stiffness method.

1 2 3__ SkN E =210GPa
\ O o = 2




Solution

Element1. i B Element 2. s

A=l Talld  [El-L Tl
Fal Lk u> F3sl  l-k; ks Ua

Fq [ ke —ki 0 q[us U1=0
Lﬁz =[""1 Aoyiks "kZH“ZI Because it is

S fixed

F, . by =k

- |— + -
’ ; P :Zl F1 [840% 105 —840* 10° TTut="0
F2=0 =[—840 106 1680 * 106 —840 = 106‘ [
F3 =5000KN —840 10 840 = 10°




Solution

. [ F2=0 _[1680 x 106 —840 106] [uZ
F3=5000KN! |—840 %« 10® 840 % 10° | lu3
0 = 1680 * 10%u2+(—840 * 10%)u3

5000= —840 * 100u2+ 840 * 10°u3

[u2]= 5.952 % 1076
u3l 11.190 x 105>



F1 840 = 106 —840 = 10° 0 ul =20
F2=0 =|—840 % 106 1680 * 106 —840 = 10° u2
F3 =5000KN 0 —840 %10 840 = 10° u3

* F1= 840 * 10°(0)+(—840 * 10°(5.952 * 107°)=-4999.68 N



Nodal forces

|f]_[ 840106 -840 106] | ul =0 E [—4999.68
1At l-840 106 840106 [luz = 5952+ 10717 | 4999.68

|21 840 106 —840*106] 5.952 % 10— ] [ —4996, 32
f3 —840 %106 840+ 106 |11.190 x 10-5| | 4996. 32



Reference

* A First Course in the Finite Element Method, Daryl Logan, Fourth
Edition.
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