CBS Department

OOP Principles:

Encapsulation
and
Abstraction

Soma Soleiman Zadeh
Object-Oriented Programming (CBS 215)
Fall 2025 - 2026
Week 8
November 26-27, 2025

Outline

o OOP Concepts (Encapsulation, Abstraction, Inheritance, Polymorphism)
o Encapsulation

o Abstraction
o Public Attributes/Methods

o Private Attributes/Methods

o getters and Setters

Encapsulation

o Encapsulation is a core principle of Object-Oriented Programming.

o Encapsulation is about bundling data and methods that operate on the

data within one unit, such as a class.

class Student:
def _ init_ (self, name, age):
self.name = hame
self.age = age

def setName(self, newName): Variables
self.name = newName

Encapsulation

o What is the benefit of encapsulation?
» Hiding a class internal details and only exposing what’s
necessary.

» Protecting a class's important data from being changed by other

classes and functions. Class

C

Variables Methods

Abstraction

o Encapsulation implements the concept of abstraction.

o Abstraction focuses on hiding implementation details and

exposing only the essential functionality of an object.

» Simplifying complex concepts.

o User of an object should only “see” the public interface of the

object; all the internal details are hidden.

Simple interface to perform
tasks, without knowing what
happens inside the ATM
machine (Hiding unnecessary
details)

Public Variables vs. Private Variables

Each class can have public or private attributes/methods.

o Public attributes/methods are accessed by

A
-

Hitiit

Public Attributes/Methods

o Python attributes and methods are public by default.

» public attributes: public attributes can be viewed and changed by

any other class or function.

» public methods: public methods can be called by any other class or

function.

Can I Make Attributes/Methods Private?

o It is possible to make attributes/methods private in a class.

o Add __ (two underscores) to the beginning of the attribute

method name, and it becomes private!

name and age | [class student: name and age | |class student:

are public def __init__(self, name, age): || are private def __init__(self, name, age):
attributes. ~—__ self.name = name attributes. —__ self.__name = name
self.age = age

def setName(self, newName):
self.__name = newName

def setName(self, newName):
self.name = newName

Private Attributes/Methods

Private attributes can only be accessed by methods defined in the class.

Private methods can only be called by other methods defined in the class.

Both name and age are private attributes. * Both name and age are private attributes.
setName() is public method. » setName() is a private method.

class Student:
def __init__(self, name, age):
self.__name = name
self.__age = age

class Student:
def __init__(self, name, age):
self.__name = name
self.__age = age

def setName(self, newName):
self.__name = newName

def __setName(self, newName):
self.__name = newName

Getter and Setter Methods

o In Python, getter and setter methods are used to access and

change private attributes safely.

o Getter Methods 2> Methods that return an attribute value.

o Setter Methods > Methods that set(change) an attribute value.

Getter and Setter Methods

o Instead of accessing private data directly, getter and setter methods provide

controlled access, allowing you to:

» Read data using a getter method.
» Update data using a setter method.

o getter and setter methods hide the internal data of your class.

o You can make all attributes private, and use getter and setter methods to

access or modify them safely.

Class Example

o Create a class named Person, with the following details:

o Attributes:

= Name (public attribute)

= Age (private attribute)

o Methods:

= getAge (public method)

= setAge (public method)

setAge() method doesn’t change the age if its value is negative.

Class Example

#EHH I Creating Person Class ###t####iH#HE
class Person:
def __init__(self, name, age):
self.name = name
self.__age = age

getAge(self):
return self.__age

setAge(self, newAge):
if newAge <= 0:

print('Invalid Age Value!')
else:

self.__age = newAge

#i#H#HEHA) Creating One Person Object ##ft#it#i##itH
pl = Person('Kate', 24)

#ifp b H I Accessing Attributes Directly

print(pl.name)
print(pl.__age)

#
#

Public Attribute. Name is shown --> 'Kate'.
Private Attribute. Age is not shown.

Calling Methods

print(pl.getAge())

pl.setAge(25)

print(pl.getAge())

Getter Method. Accessing Age attribute
through getter. Age is shown —-> 24

Setter Method. Changing Age attribute
through setter. Age is changed to 25.

Getter Method. Accessing Age attribute
through getter. New Age is shown ——> 25

Instance Attributes vs. Class Attributes

o Instance Attributes

o Variables that belong to one object;

o They are unique to each object and are not shared between

other class objects.

o Class Attributes

o Variables that belong to a class,

o They are shared between all class objects.

Instance Attributes vs. Class Attributes

o Instance Attributes

o Instance attributes are created inside __init__() method.

oIf you change an instance attribute, only one object is
affected.
o Class Attributes
o Class attributes are created outside __init__() method.

o|If you change a class attribute, the value is changed for all

objects.

Student Class — Class Attributes vs. Instance Attributes

HUH Y Creating Student Class #######HERGHY
class Student:
department = 'Cybersecurity’
def __init__(self, student_id, name, gpa):
self.student_id = student_id
self.name = name
self.gpa = gpa

#if###E##EE Creating Two Student Objects ####HH##HHTREH
sl = Student(l, 'Kate', 2.6)
s2 = Student(2, 'Mike', 3.1)

Student Class — Class Attributes vs. Instance Attributes

print(sl.name, "with gpa =", sl.gpa, "studies in", sl.department, "department!")
print(s2.name, "with gpa =", s2.gpa,"studies in", s2.department, "department!")

Assigning new value to an instance attribute

sl.gpa = 3.4

print(sl.name, "with gpa =", sl.gpa, "studies in", sl.department, "department!")
print(s2.name, "with gpa =", s2.gpa,"studies in", s2.department, "department!")

Assigning new value to a class attribute

Student.department = "IT"

print(sl.name, "with gpa =", sl.gpa, "studies in", sl.department, "department!")
print(s2.name, "with gpa =", s2.gpa,"studies in", s2.department, "department!")

with gpa
with gpa

studies i
studies i

with gpa

with gpa

studies i
studies i

with gpa
with gpa

department value is
Cybersecurity for all objects.

gpa is an instance attribute, so
it is changed only for one
object.

department is a class
attribute, so it is changed for
the class (all objects).

studies in Cybersecurity department!
studies in Cybersecurity department!

Cybersecurity department!
Cybersecurity department!

IT department!
IT department!

	Slide 1: OOP Principles: Encapsulation and Abstraction
	Slide 2: Outline
	Slide 3: Encapsulation
	Slide 4: Encapsulation
	Slide 5: Abstraction
	Slide 6: A Real-World Example of Abstraction
	Slide 7: Public Variables vs. Private Variables
	Slide 8: Public Attributes/Methods
	Slide 9: Can I Make Attributes/Methods Private?
	Slide 10: Private Attributes/Methods
	Slide 11: Getter and Setter Methods
	Slide 12: Getter and Setter Methods
	Slide 13: Class Example
	Slide 14: Class Example
	Slide 15: Instance Attributes vs. Class Attributes
	Slide 16: Instance Attributes vs. Class Attributes
	Slide 17: Student Class – Class Attributes vs. Instance Attributes
	Slide 18: Student Class – Class Attributes vs. Instance Attributes

