CBS Department

OOP Principles:
Inheritance and
Polymorphism

Soma Soleiman Zadeh
Object-Oriented Programming (CBS 215)
Fall 2025 - 2026
Week 9 - Week 10
December 3 - 10, 2025

Outline

© 0O0P Concepts (Encapsulation, Abstraction, Inheritance, Polymorphism)

o Inheritance
o Parent Class (Superclass)

o Child Class (Subclass)

o Polymorphism

Hierarchies

Student

Necessity of Inheritance

oSometimes you come across a situation where you have already defined
a class, but then realize you need special behaviors in some, but not all,

objects of the class.

oThen again, sometimes you realize you’'ve defined two very similar

classes with only minor differences.
o As programmers, we aim to always repeat ourselves as little as possible.

o So how can we have different implementations of similar objects?

Example of Similar Objects

class Student:
def __init__(self, name, id, email, credits):
self.name = name
self.id = id
self.email = email
self.credits = credits

class Teacher:
def __init__(self, name, email, room, teaching_years):
self.name = name
self.email = email
self.room = room
self.teaching_years = teaching_years

Example of Similar Objects

o Imagine the school's email address changed. All addresses would have to

be updated.

o Two separate versions of the same function:

def update_email_student(self):
self.email = self.email.replace(".com", ".edu")

def update_email_teacher(self):
self.email = self.email.replace(".com", ".edu")

Solution?

o Unnecessary Repetition of Attributes and Methods

o Combining all attributes and all methods of both classes in a

single class.

o |Is it a good solution?

Is there a better solution?

Inheritance

°oOOP languages usually have a techniqgue called inheritance.

o A class can inherit the attributes and methods of another

class.

o |[n addition to these inherited attributes and methods, a class

can also contain attributes and methods that are unique to it.

Parent Class and Child Class

Parent Class * Child class inherits all attributes and

1 methods of the parent class.

extends
* Child class can add more attributes,

* Child class can add more methods,

* Child class can override methods of

Child Class

the parent class.

Person Class

class Person:
def __init__(self, name, email):
self.name = name
self.email = email

update_email(self,newDomain):
oldDomain = self.email.split("@")[1]
self.email = self.email.replace(oldDomain, newDomain)

Child Classes (Student and Teacher)

class Student(Person):
def __init__(self, name, id, email, credits):
Person.__init__(name, email)
self.id = id
self.credits = credits

class Teacher(Person):
def __init__(self, name, email, room, teaching_years):
Person.__init__(name, email)
self.room = room
self.teaching_years = teaching_years

Let’s Create Objects and Try Accessing
Attributes and Calling Methods

Creating Student and Teacher Objects
sl = Student('Amir', 'amir@yahoo.com',151024001,260)
tl = Teacher('Kamal', 'kamal@icloud.com',328, 5)

Accessing Attributes, Calling Methods
print("The old email address of ",sl.name, "is", sl.email)

sl.setEmail('gmail.com')

print("The new email address of ",sl.name, "is", sl.email)

Example

o Add a method to Student class to return student’s stage based on their

credits. credits stage
0-19

20 - 39
40 - 59
60 - 80

o Add a method to Teacher table that calculate and return the total

additional payment to the teacher(additional payment is $20 per each

teaching year experience).

Polymorphism

o Polymorphism is an OOP core component.

o Polymorphism means “multiple forms”.

o Polymorphism - Using methods/functions/operators with the

same name that can be executed on many objects or classes.

Function Polymorphism

o The same function can operate on different types of data and

behave differently.

o Example: len() Function
len('Hello')

len([1,7,5])

len((9,6,3,7,1))

Operator Polymorphism

o The same operator can operate on different types of data and

behave differently.
print(4 + 6)

print(2.6 + 4.1)
print([4,5] + [1,9])

print("Cybersecurity" + " " + "Department")

Class Polymorphism

o The same method in different classes has different

implementations.

o Class Polymorphism can be used:
o in parent class and child classes.

o in different classes.

Method Overriding

o Method overriding in Python happens when a child class

defines a method that has the same name and parameters as a

method in its parent class.

oThe child class method overrides or replaces the parent class

method when called on an object of the child class.

Class Polymorphism

class Animal:
def speak(self):
return "Generic Sound"

class Dog(Animal):
def speak(self):
return "Woof!"

class Cat(Animal):
def speak(self):
return "Meow!"

10

	Slide 1: OOP Principles: Inheritance and Polymorphism
	Slide 2: Outline
	Slide 3: Hierarchies
	Slide 4: Necessity of Inheritance
	Slide 5: Example of Similar Objects
	Slide 6: Example of Similar Objects
	Slide 7: Solution?
	Slide 8: Inheritance
	Slide 9: Parent Class and Child Class
	Slide 10: Person Class
	Slide 11: Child Classes (Student and Teacher)
	Slide 12: Let’s Create Objects and Try Accessing Attributes and Calling Methods
	Slide 13: Example
	Slide 14: Polymorphism
	Slide 15: Function Polymorphism
	Slide 16: Operator Polymorphism
	Slide 17: Class Polymorphism
	Slide 18: Method Overriding
	Slide 19: Class Polymorphism

