
1

Special Methods

Soma Soleiman Zadeh

Object-Oriented Programming (CBS 215)

Fall 2025 - 2026

Week 11

 December 17 – 18, 2025

CBS Department

Outline

◦ Special Methods in Class

◦ __init__()

◦ __new__()

◦ __str__()

◦ __repr__()

◦ Special Methods for Comparison Operators

◦ Special Methods for Arithmetic Operators

2

Special Methods (Dunder Methods) in Class

◦ Special Methods are predefined methods in Python that have double

underscores at the beginning and end of their names.

◦ Example of Special Methods → __init__()

◦ Special methods allow your classes to interact with built-in Python

operations, such as addition, string representation, comparison, and

many more.

__init__() Method

◦ __init__() method is called the class constructor. This method is

invoked when an object of a class is created.

◦ The goal of __init__() method is to initialize all attributes that you have

in your class.

3

__new__() Method

◦ __new__() is a method for creating a new empty object of a class.

◦ When the __init__() method is called, Python implicitly calls the

__new__() method to return a new empty object of the class.

◦ The default implementation of __new__() is enough for most use

cases. So, there is no need to change its implementation.

__str__() Method and __repr__() Method

◦ __str__() and __repr__() are from the most commonly used methods

in custom classes.

◦ Both __str__() and __repr__() methods return string presentations of

an object.

◦ Why two methods for string representation of objects?

4

Difference Between __str__() and __repr__()

◦ __str__() provides a string presentation of an object, for end-users.

➢ A simple description of the object

◦ __repr__() provides a string presentation of an object, for developers

or programmers.

➢ A detailed description of the object

Example of __str__() and __repr__() Methods

5

Special Methods Behind Comparison Operators

Operator Special Method Description

< __lt__(self, other) self is Less Than other.

<= __le__(self, other) self is Less than or Equal to other.

== __eq__(self, other) self is Equal to other.

!= __ne__(self, other) self is Not Equal to other.

> __gt__(self, other) self is Greater Than other.

>= __ge__(self, other) self is Greater than or Equal to other.

Example of Equality Comparison: __eq__() Method

◦ The __eq__() method is a special method that allows for the

customization of the equality comparison operator == for objects of a

class.

◦ By default, __eq__() method compares the memory addresses of the

objects.

◦ Two objects of a class are equal if they are actually the same

object.

6

Overriding __eq__() Method

◦ Overriding __eq__() allows for more meaningful comparisons

between objects.

◦We are going to override the __eq__() method to compare

objects based on their content, not their memory addresses.

Overriding __eq__() Method

7

Special Methods Behind Arithmetic Operators

Operator Special Method Description

+ __add__(self, other) Addition

- __sub__(self, other) Subtraction

* __mul__(self, other) Multiplication

/ __truediv__(self, other) True Division

// __floordiv__(self, other) Floor Division

% __mod__(self, other) Modulo Operation

** __pow__(self, other) Power Operation (Exponentiation)

	Slide 1: Special Methods
	Slide 2: Outline
	Slide 3: Special Methods (Dunder Methods) in Class
	Slide 4: __init__() Method
	Slide 5: __new__() Method
	Slide 6: __str__() Method and __repr__() Method
	Slide 7: Difference Between __str__() and __repr__()
	Slide 8: Example of __str__() and __repr__() Methods
	Slide 9: Special Methods Behind Comparison Operators
	Slide 10: Example of Equality Comparison: __eq__() Method
	Slide 11: Overriding __eq__() Method
	Slide 12: Overriding __eq__() Method
	Slide 13: Special Methods Behind Arithmetic Operators

